多相流中弯曲角度对砂粒侵蚀影响的CFD评价

A. Farokhipour, Z. Mansoori, M. Saffar‐Avval, S. Shirazi, G. Ahmadi
{"title":"多相流中弯曲角度对砂粒侵蚀影响的CFD评价","authors":"A. Farokhipour, Z. Mansoori, M. Saffar‐Avval, S. Shirazi, G. Ahmadi","doi":"10.1115/fedsm2020-20069","DOIUrl":null,"url":null,"abstract":"\n In many industrial applications, gas-liquid-particle three-phase flows are observed. Predicting erosion damage in this type of flow is a challenging issue, and so many factors, such as the liquid film behavior have significant effects on the erosion rate. In the present study, the Eulerian-Lagrangian approach was implemented to study the process of sand particle erosion in elbows with different bend angles. For this purpose, gas and liquid phases under annular flow conditions were introduced at the pipe inlet, and the volume of fluid (VOF) method was employed to solve the governing equations. For evaluating the erosion rate, the Det Norske Veritas (DNV) model was applied. The predicted erosion results for the bend angles of 30°, 60° and 90° at different orientations were compared with those of the two-phase gas-particle flows. The simulation results indicated that for gas-liquid-particle flow, the behavior of film thickness in the bend plays a major role on the particle impact velocity and the corresponding erosion rates. By comparing the impact characteristics for gas and liquid superficial velocities of 40 and 0.4 m/s, respectively, in the 90° elbow, it was found that the impact velocities for gas-particle and gas-liquid-particle flows at the erosion hotspot are 38 and 14 m/s, respectively. In addition, among the studied geometries, the 30° elbow is the most erosion-resistant bend angle configuration among those studied for both two- and three-phase flows.","PeriodicalId":333138,"journal":{"name":"Volume 2: Fluid Mechanics; Multiphase Flows","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFD Evaluation of Bend Angle Effects on Sand Particle Erosion in Multiphase Flows\",\"authors\":\"A. Farokhipour, Z. Mansoori, M. Saffar‐Avval, S. Shirazi, G. Ahmadi\",\"doi\":\"10.1115/fedsm2020-20069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In many industrial applications, gas-liquid-particle three-phase flows are observed. Predicting erosion damage in this type of flow is a challenging issue, and so many factors, such as the liquid film behavior have significant effects on the erosion rate. In the present study, the Eulerian-Lagrangian approach was implemented to study the process of sand particle erosion in elbows with different bend angles. For this purpose, gas and liquid phases under annular flow conditions were introduced at the pipe inlet, and the volume of fluid (VOF) method was employed to solve the governing equations. For evaluating the erosion rate, the Det Norske Veritas (DNV) model was applied. The predicted erosion results for the bend angles of 30°, 60° and 90° at different orientations were compared with those of the two-phase gas-particle flows. The simulation results indicated that for gas-liquid-particle flow, the behavior of film thickness in the bend plays a major role on the particle impact velocity and the corresponding erosion rates. By comparing the impact characteristics for gas and liquid superficial velocities of 40 and 0.4 m/s, respectively, in the 90° elbow, it was found that the impact velocities for gas-particle and gas-liquid-particle flows at the erosion hotspot are 38 and 14 m/s, respectively. In addition, among the studied geometries, the 30° elbow is the most erosion-resistant bend angle configuration among those studied for both two- and three-phase flows.\",\"PeriodicalId\":333138,\"journal\":{\"name\":\"Volume 2: Fluid Mechanics; Multiphase Flows\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Fluid Mechanics; Multiphase Flows\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/fedsm2020-20069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Fluid Mechanics; Multiphase Flows","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2020-20069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在许多工业应用中,观察到气-液-颗粒三相流动。在这种类型的流动中,预测侵蚀损伤是一个具有挑战性的问题,许多因素,如液膜行为对侵蚀速率有显著影响。本文采用欧拉-拉格朗日方法研究了不同弯曲角度弯头内砂粒的侵蚀过程。为此,在管道入口引入环空流动条件下的气相和液相,采用流体体积法求解控制方程。为评估侵蚀速率,采用挪威船级社(DNV)模型。并与两相气粒流的预测结果进行了对比,分析了30°、60°和90°三种不同方向弯曲时的侵蚀预测结果。仿真结果表明,对于气液颗粒流动,弯曲处膜厚的变化对颗粒的冲击速度和相应的侵蚀速率有重要影响。对比90°弯头内气液表面速度分别为40 m/s和0.4 m/s时的冲击特性,发现侵蚀热点处气-颗粒流和气-液-颗粒流的冲击速度分别为38 m/s和14 m/s。此外,在研究的几何形状中,30°弯头是两相流和三相流中最耐侵蚀的弯角形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CFD Evaluation of Bend Angle Effects on Sand Particle Erosion in Multiphase Flows
In many industrial applications, gas-liquid-particle three-phase flows are observed. Predicting erosion damage in this type of flow is a challenging issue, and so many factors, such as the liquid film behavior have significant effects on the erosion rate. In the present study, the Eulerian-Lagrangian approach was implemented to study the process of sand particle erosion in elbows with different bend angles. For this purpose, gas and liquid phases under annular flow conditions were introduced at the pipe inlet, and the volume of fluid (VOF) method was employed to solve the governing equations. For evaluating the erosion rate, the Det Norske Veritas (DNV) model was applied. The predicted erosion results for the bend angles of 30°, 60° and 90° at different orientations were compared with those of the two-phase gas-particle flows. The simulation results indicated that for gas-liquid-particle flow, the behavior of film thickness in the bend plays a major role on the particle impact velocity and the corresponding erosion rates. By comparing the impact characteristics for gas and liquid superficial velocities of 40 and 0.4 m/s, respectively, in the 90° elbow, it was found that the impact velocities for gas-particle and gas-liquid-particle flows at the erosion hotspot are 38 and 14 m/s, respectively. In addition, among the studied geometries, the 30° elbow is the most erosion-resistant bend angle configuration among those studied for both two- and three-phase flows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信