一种基于记忆卷积神经网络的改进文本分类模型

Yiyao Wang, Lihua Tian, Chen Li
{"title":"一种基于记忆卷积神经网络的改进文本分类模型","authors":"Yiyao Wang, Lihua Tian, Chen Li","doi":"10.1145/3404555.3404595","DOIUrl":null,"url":null,"abstract":"This paper proposes a text classification model, called improved memory neural network model, which is used to process large-scale training data. In this model, the optimized transformer feature extractor is used to replace the memory neural network which can not be parallelized. At the same time, the multi-level void convolution matrix is designed to replace the convolution neural network, so as to extract more accurate semantic unit features. Finally, in order to reduce the model parameters, each level of the convolution network pooling layer and the full connection layer are eliminated, but the global average pooling layer is instead used. The experimental results on THUCNews dataset and Twitter dataset show that the proposed method achieves competitive results in the accuracy, model parameters and convergence rate.","PeriodicalId":220526,"journal":{"name":"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Improved Text Classification Model Based on Memory Convolution Neural Network\",\"authors\":\"Yiyao Wang, Lihua Tian, Chen Li\",\"doi\":\"10.1145/3404555.3404595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a text classification model, called improved memory neural network model, which is used to process large-scale training data. In this model, the optimized transformer feature extractor is used to replace the memory neural network which can not be parallelized. At the same time, the multi-level void convolution matrix is designed to replace the convolution neural network, so as to extract more accurate semantic unit features. Finally, in order to reduce the model parameters, each level of the convolution network pooling layer and the full connection layer are eliminated, but the global average pooling layer is instead used. The experimental results on THUCNews dataset and Twitter dataset show that the proposed method achieves competitive results in the accuracy, model parameters and convergence rate.\",\"PeriodicalId\":220526,\"journal\":{\"name\":\"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3404555.3404595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3404555.3404595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种用于处理大规模训练数据的文本分类模型——改进记忆神经网络模型。在该模型中,利用优化后的变压器特征提取器来代替不能并行化的记忆神经网络。同时,设计多级空卷积矩阵代替卷积神经网络,提取更准确的语义单元特征。最后,为了减小模型参数,消除了卷积网络池化层和全连接层的每一层,而采用全局平均池化层。在THUCNews数据集和Twitter数据集上的实验结果表明,该方法在准确率、模型参数和收敛速度上都取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Text Classification Model Based on Memory Convolution Neural Network
This paper proposes a text classification model, called improved memory neural network model, which is used to process large-scale training data. In this model, the optimized transformer feature extractor is used to replace the memory neural network which can not be parallelized. At the same time, the multi-level void convolution matrix is designed to replace the convolution neural network, so as to extract more accurate semantic unit features. Finally, in order to reduce the model parameters, each level of the convolution network pooling layer and the full connection layer are eliminated, but the global average pooling layer is instead used. The experimental results on THUCNews dataset and Twitter dataset show that the proposed method achieves competitive results in the accuracy, model parameters and convergence rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信