正式验证近似的基于证书的方法

F. Bréhard, A. Mahboubi, D. Pous
{"title":"正式验证近似的基于证书的方法","authors":"F. Bréhard, A. Mahboubi, D. Pous","doi":"10.4230/LIPICS.ITP.2019.8","DOIUrl":null,"url":null,"abstract":"We present a library to verify rigorous approximations of univariate functions on real numbers, with \nthe Coq proof assistant. Based on interval arithmetic, this library also implements a technique of \nvalidation a posteriori based on the Banach fixed-point theorem. We illustrate this technique on \nthe case of operations of division and square root. This library features a collection of abstract \nstructures that organise the specfication of rigorous approximations, and modularise the related \nproofs. Finally, we provide an implementation of verified Chebyshev approximations, and we discuss \na few examples of computations.","PeriodicalId":296683,"journal":{"name":"International Conference on Interactive Theorem Proving","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Certificate-Based Approach to Formally Verified Approximations\",\"authors\":\"F. Bréhard, A. Mahboubi, D. Pous\",\"doi\":\"10.4230/LIPICS.ITP.2019.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a library to verify rigorous approximations of univariate functions on real numbers, with \\nthe Coq proof assistant. Based on interval arithmetic, this library also implements a technique of \\nvalidation a posteriori based on the Banach fixed-point theorem. We illustrate this technique on \\nthe case of operations of division and square root. This library features a collection of abstract \\nstructures that organise the specfication of rigorous approximations, and modularise the related \\nproofs. Finally, we provide an implementation of verified Chebyshev approximations, and we discuss \\na few examples of computations.\",\"PeriodicalId\":296683,\"journal\":{\"name\":\"International Conference on Interactive Theorem Proving\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Interactive Theorem Proving\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPICS.ITP.2019.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Interactive Theorem Proving","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPICS.ITP.2019.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提供了一个库来验证实数上单变量函数的严格逼近,并使用Coq证明助手。在区间算法的基础上,实现了一种基于Banach不动点定理的后验验证技术。我们用除法和平方根的例子来说明这种方法。这个库的特点是一个抽象结构的集合,组织严格近似的规范,并模块化相关的证明。最后,我们提供了一个验证Chebyshev近似的实现,并讨论了几个计算示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Certificate-Based Approach to Formally Verified Approximations
We present a library to verify rigorous approximations of univariate functions on real numbers, with the Coq proof assistant. Based on interval arithmetic, this library also implements a technique of validation a posteriori based on the Banach fixed-point theorem. We illustrate this technique on the case of operations of division and square root. This library features a collection of abstract structures that organise the specfication of rigorous approximations, and modularise the related proofs. Finally, we provide an implementation of verified Chebyshev approximations, and we discuss a few examples of computations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信