基于生成对抗网络的工程文档船舶甲板分割

M. Uddin, Raphael Pamie-George, Daron Wilkins, Andres Sousa-Poza, M. Canan, Samuel F. Kovacic, Jiang Li
{"title":"基于生成对抗网络的工程文档船舶甲板分割","authors":"M. Uddin, Raphael Pamie-George, Daron Wilkins, Andres Sousa-Poza, M. Canan, Samuel F. Kovacic, Jiang Li","doi":"10.1109/aiiot54504.2022.9817355","DOIUrl":null,"url":null,"abstract":"Generative adversarial networks (GANs) have become very popular in recent years. GANs have proved to be successful in different computer vision tasks including image-translation, image super-resolution etc. In this paper, we have used GAN models for ship deck segmentation. We have used 2D scanned raster images of ship decks provided by US Navy Military Sealift Command (MSC) to extract necessary information including ship walls, objects etc. Our segmentation results will be helpful to get vector and 3D image of a ship that can be later used for maintenance of the ship. We applied the trained models to engineering documents provided by MSC and obtained very promising results, demonstrating that GANs can be potentially good candidates for this research area.","PeriodicalId":409264,"journal":{"name":"2022 IEEE World AI IoT Congress (AIIoT)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ship Deck Segmentation In Engineering Document Using Generative Adversarial Networks\",\"authors\":\"M. Uddin, Raphael Pamie-George, Daron Wilkins, Andres Sousa-Poza, M. Canan, Samuel F. Kovacic, Jiang Li\",\"doi\":\"10.1109/aiiot54504.2022.9817355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative adversarial networks (GANs) have become very popular in recent years. GANs have proved to be successful in different computer vision tasks including image-translation, image super-resolution etc. In this paper, we have used GAN models for ship deck segmentation. We have used 2D scanned raster images of ship decks provided by US Navy Military Sealift Command (MSC) to extract necessary information including ship walls, objects etc. Our segmentation results will be helpful to get vector and 3D image of a ship that can be later used for maintenance of the ship. We applied the trained models to engineering documents provided by MSC and obtained very promising results, demonstrating that GANs can be potentially good candidates for this research area.\",\"PeriodicalId\":409264,\"journal\":{\"name\":\"2022 IEEE World AI IoT Congress (AIIoT)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE World AI IoT Congress (AIIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/aiiot54504.2022.9817355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE World AI IoT Congress (AIIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aiiot54504.2022.9817355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

生成对抗网络(GANs)近年来变得非常流行。gan已经被证明在不同的计算机视觉任务中是成功的,包括图像翻译、图像超分辨率等。在本文中,我们使用GAN模型进行船舶甲板分割。我们使用美国海军军事海运司令部(MSC)提供的舰船甲板二维扫描光栅图像提取必要信息,包括舰船壁、物体等。我们的分割结果将有助于得到船舶的矢量和三维图像,这些图像可以在后期用于船舶的维护。我们将训练好的模型应用于MSC提供的工程文档,并获得了非常有希望的结果,表明gan可能是该研究领域的潜在良好候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ship Deck Segmentation In Engineering Document Using Generative Adversarial Networks
Generative adversarial networks (GANs) have become very popular in recent years. GANs have proved to be successful in different computer vision tasks including image-translation, image super-resolution etc. In this paper, we have used GAN models for ship deck segmentation. We have used 2D scanned raster images of ship decks provided by US Navy Military Sealift Command (MSC) to extract necessary information including ship walls, objects etc. Our segmentation results will be helpful to get vector and 3D image of a ship that can be later used for maintenance of the ship. We applied the trained models to engineering documents provided by MSC and obtained very promising results, demonstrating that GANs can be potentially good candidates for this research area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信