{"title":"StereoVAE:使用嵌入式gpu的轻量级立体匹配系统","authors":"Qiong Chang, Xiang Li, Xin Xu, Xin Liu, Yun Li, Jun Miyazaki","doi":"10.1109/ICRA48891.2023.10160441","DOIUrl":null,"url":null,"abstract":"We propose a lightweight system for stereo-matching using embedded graphic processing units (GPUs). The proposed system overcomes the trade-off between accuracy and processing speed in stereo matching, thus further improving the matching accuracy while ensuring real-time processing. The basic idea is to construct a tiny neural network based on a variational autoencoder (VAE) to achieve the upscaling and refinement a small size of coarse disparity map. This map is initially generated using a traditional matching method. The proposed hybrid structure maintains the advantage of low computational complexity found in traditional methods. Additionally, it achieves matching accuracy with the help of a neural network. Extensive experiments on the KITTI 2015 benchmark dataset demonstrate that our tiny system exhibits high robustness in improving the accuracy of coarse disparity maps generated by different algorithms, while running in real-time on embedded GPUs.","PeriodicalId":360533,"journal":{"name":"2023 IEEE International Conference on Robotics and Automation (ICRA)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"StereoVAE: A lightweight stereo-matching system using embedded GPUs\",\"authors\":\"Qiong Chang, Xiang Li, Xin Xu, Xin Liu, Yun Li, Jun Miyazaki\",\"doi\":\"10.1109/ICRA48891.2023.10160441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a lightweight system for stereo-matching using embedded graphic processing units (GPUs). The proposed system overcomes the trade-off between accuracy and processing speed in stereo matching, thus further improving the matching accuracy while ensuring real-time processing. The basic idea is to construct a tiny neural network based on a variational autoencoder (VAE) to achieve the upscaling and refinement a small size of coarse disparity map. This map is initially generated using a traditional matching method. The proposed hybrid structure maintains the advantage of low computational complexity found in traditional methods. Additionally, it achieves matching accuracy with the help of a neural network. Extensive experiments on the KITTI 2015 benchmark dataset demonstrate that our tiny system exhibits high robustness in improving the accuracy of coarse disparity maps generated by different algorithms, while running in real-time on embedded GPUs.\",\"PeriodicalId\":360533,\"journal\":{\"name\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA48891.2023.10160441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48891.2023.10160441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
StereoVAE: A lightweight stereo-matching system using embedded GPUs
We propose a lightweight system for stereo-matching using embedded graphic processing units (GPUs). The proposed system overcomes the trade-off between accuracy and processing speed in stereo matching, thus further improving the matching accuracy while ensuring real-time processing. The basic idea is to construct a tiny neural network based on a variational autoencoder (VAE) to achieve the upscaling and refinement a small size of coarse disparity map. This map is initially generated using a traditional matching method. The proposed hybrid structure maintains the advantage of low computational complexity found in traditional methods. Additionally, it achieves matching accuracy with the help of a neural network. Extensive experiments on the KITTI 2015 benchmark dataset demonstrate that our tiny system exhibits high robustness in improving the accuracy of coarse disparity maps generated by different algorithms, while running in real-time on embedded GPUs.