StereoVAE:使用嵌入式gpu的轻量级立体匹配系统

Qiong Chang, Xiang Li, Xin Xu, Xin Liu, Yun Li, Jun Miyazaki
{"title":"StereoVAE:使用嵌入式gpu的轻量级立体匹配系统","authors":"Qiong Chang, Xiang Li, Xin Xu, Xin Liu, Yun Li, Jun Miyazaki","doi":"10.1109/ICRA48891.2023.10160441","DOIUrl":null,"url":null,"abstract":"We propose a lightweight system for stereo-matching using embedded graphic processing units (GPUs). The proposed system overcomes the trade-off between accuracy and processing speed in stereo matching, thus further improving the matching accuracy while ensuring real-time processing. The basic idea is to construct a tiny neural network based on a variational autoencoder (VAE) to achieve the upscaling and refinement a small size of coarse disparity map. This map is initially generated using a traditional matching method. The proposed hybrid structure maintains the advantage of low computational complexity found in traditional methods. Additionally, it achieves matching accuracy with the help of a neural network. Extensive experiments on the KITTI 2015 benchmark dataset demonstrate that our tiny system exhibits high robustness in improving the accuracy of coarse disparity maps generated by different algorithms, while running in real-time on embedded GPUs.","PeriodicalId":360533,"journal":{"name":"2023 IEEE International Conference on Robotics and Automation (ICRA)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"StereoVAE: A lightweight stereo-matching system using embedded GPUs\",\"authors\":\"Qiong Chang, Xiang Li, Xin Xu, Xin Liu, Yun Li, Jun Miyazaki\",\"doi\":\"10.1109/ICRA48891.2023.10160441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a lightweight system for stereo-matching using embedded graphic processing units (GPUs). The proposed system overcomes the trade-off between accuracy and processing speed in stereo matching, thus further improving the matching accuracy while ensuring real-time processing. The basic idea is to construct a tiny neural network based on a variational autoencoder (VAE) to achieve the upscaling and refinement a small size of coarse disparity map. This map is initially generated using a traditional matching method. The proposed hybrid structure maintains the advantage of low computational complexity found in traditional methods. Additionally, it achieves matching accuracy with the help of a neural network. Extensive experiments on the KITTI 2015 benchmark dataset demonstrate that our tiny system exhibits high robustness in improving the accuracy of coarse disparity maps generated by different algorithms, while running in real-time on embedded GPUs.\",\"PeriodicalId\":360533,\"journal\":{\"name\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA48891.2023.10160441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48891.2023.10160441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个轻量级的系统立体匹配使用嵌入式图形处理单元(gpu)。该系统克服了立体匹配中精度与处理速度之间的权衡,在保证实时性的同时进一步提高了匹配精度。其基本思想是构建一个基于变分自编码器(VAE)的微型神经网络,实现小尺寸粗视差图的上尺度和细化。该地图最初是使用传统的匹配方法生成的。所提出的混合结构保持了传统方法计算复杂度低的优点。此外,该方法还借助神经网络实现了匹配精度。在KITTI 2015基准数据集上的大量实验表明,我们的微型系统在提高不同算法生成的粗视差图的精度方面表现出很高的鲁棒性,同时在嵌入式gpu上实时运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
StereoVAE: A lightweight stereo-matching system using embedded GPUs
We propose a lightweight system for stereo-matching using embedded graphic processing units (GPUs). The proposed system overcomes the trade-off between accuracy and processing speed in stereo matching, thus further improving the matching accuracy while ensuring real-time processing. The basic idea is to construct a tiny neural network based on a variational autoencoder (VAE) to achieve the upscaling and refinement a small size of coarse disparity map. This map is initially generated using a traditional matching method. The proposed hybrid structure maintains the advantage of low computational complexity found in traditional methods. Additionally, it achieves matching accuracy with the help of a neural network. Extensive experiments on the KITTI 2015 benchmark dataset demonstrate that our tiny system exhibits high robustness in improving the accuracy of coarse disparity maps generated by different algorithms, while running in real-time on embedded GPUs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信