基于可能性分布伪装的图像变化检测

Charles Lesniewska-Choquet, A. Atto, G. Mauris, G. Mercier
{"title":"基于可能性分布伪装的图像变化检测","authors":"Charles Lesniewska-Choquet, A. Atto, G. Mauris, G. Mercier","doi":"10.1109/FUZZ-IEEE.2017.8015641","DOIUrl":null,"url":null,"abstract":"In this paper we present a new similarity measure between possibility distributions based on the Kullback-Leibler (KL) divergence in the domain of real numbers. The possibility distributions are obtained thanks to the DFMP probability-possibility transformation [1] lying on the principle that a possibility measure can encode a family of probability measures. We consider here two particular possibility distributions built from parameter estimation of the Weibull and Rayleigh probability laws. The analytical expression of the KL divergence for the two considered possibility distributions are given, allowing a simple computation which depends on the parameters of the possibility distribution obtained. This new similarity measure is compared to the existing KL divergence for probability distributions in a context of change detection over simulated images as they provide a ground-truth of the changes required to evaluate the rate of true detection against false alarm.","PeriodicalId":408343,"journal":{"name":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Image change detection by possibility distribution dissemblance\",\"authors\":\"Charles Lesniewska-Choquet, A. Atto, G. Mauris, G. Mercier\",\"doi\":\"10.1109/FUZZ-IEEE.2017.8015641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a new similarity measure between possibility distributions based on the Kullback-Leibler (KL) divergence in the domain of real numbers. The possibility distributions are obtained thanks to the DFMP probability-possibility transformation [1] lying on the principle that a possibility measure can encode a family of probability measures. We consider here two particular possibility distributions built from parameter estimation of the Weibull and Rayleigh probability laws. The analytical expression of the KL divergence for the two considered possibility distributions are given, allowing a simple computation which depends on the parameters of the possibility distribution obtained. This new similarity measure is compared to the existing KL divergence for probability distributions in a context of change detection over simulated images as they provide a ground-truth of the changes required to evaluate the rate of true detection against false alarm.\",\"PeriodicalId\":408343,\"journal\":{\"name\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ-IEEE.2017.8015641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2017.8015641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于实数域上Kullback-Leibler (KL)散度的可能性分布相似性度量方法。利用一个可能性测度可以编码一组概率测度的原理,利用DFMP概率-可能性变换[1]得到概率分布。我们在此考虑由威布尔和瑞利概率律的参数估计建立的两种特殊的可能性分布。给出了考虑的两种可能性分布的KL散度的解析表达式,使得依赖于所得到的可能性分布参数的计算变得简单。这种新的相似性度量与现有的KL散度在模拟图像的变化检测背景下的概率分布进行了比较,因为它们提供了评估真检测对假警报的率所需的变化的基本真值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image change detection by possibility distribution dissemblance
In this paper we present a new similarity measure between possibility distributions based on the Kullback-Leibler (KL) divergence in the domain of real numbers. The possibility distributions are obtained thanks to the DFMP probability-possibility transformation [1] lying on the principle that a possibility measure can encode a family of probability measures. We consider here two particular possibility distributions built from parameter estimation of the Weibull and Rayleigh probability laws. The analytical expression of the KL divergence for the two considered possibility distributions are given, allowing a simple computation which depends on the parameters of the possibility distribution obtained. This new similarity measure is compared to the existing KL divergence for probability distributions in a context of change detection over simulated images as they provide a ground-truth of the changes required to evaluate the rate of true detection against false alarm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信