基于Shearlet和波原子变换的三种分类器的软生物特征估计

A. El-Samak, M. Alhanjouri
{"title":"基于Shearlet和波原子变换的三种分类器的软生物特征估计","authors":"A. El-Samak, M. Alhanjouri","doi":"10.1109/PICECE.2019.8747179","DOIUrl":null,"url":null,"abstract":"The goal is to find the best feature extraction, which performs the smallest feature vector length and gives the highest performance. In this paper, we proposed a methodology to extract effective features from facial images using two multiresolution transforms; waveatom and shearlet, for estimating gender, ethnicity, facial expression and age. Three classifiers used to perform the final estimation, which are: Artificial Neural Network (ANN), Support vector machine (SVM) and Self-Organization Map (SOM). A comparative study is made to determine the best extractor and classifier. Experiments carried out on a large database collected from three different databases: US Adult Faces, Extended Cohn-Kanade and FG-NET database. The experimental results of the proposed methodology using waveatom transform proved to be effective in the three classifiers, In contrast of shearlet transform.","PeriodicalId":375980,"journal":{"name":"2019 IEEE 7th Palestinian International Conference on Electrical and Computer Engineering (PICECE)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Soft Biometrics Estimation Using Shearlet and Waveatom Transforms With Three Different Classifiers\",\"authors\":\"A. El-Samak, M. Alhanjouri\",\"doi\":\"10.1109/PICECE.2019.8747179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal is to find the best feature extraction, which performs the smallest feature vector length and gives the highest performance. In this paper, we proposed a methodology to extract effective features from facial images using two multiresolution transforms; waveatom and shearlet, for estimating gender, ethnicity, facial expression and age. Three classifiers used to perform the final estimation, which are: Artificial Neural Network (ANN), Support vector machine (SVM) and Self-Organization Map (SOM). A comparative study is made to determine the best extractor and classifier. Experiments carried out on a large database collected from three different databases: US Adult Faces, Extended Cohn-Kanade and FG-NET database. The experimental results of the proposed methodology using waveatom transform proved to be effective in the three classifiers, In contrast of shearlet transform.\",\"PeriodicalId\":375980,\"journal\":{\"name\":\"2019 IEEE 7th Palestinian International Conference on Electrical and Computer Engineering (PICECE)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 7th Palestinian International Conference on Electrical and Computer Engineering (PICECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PICECE.2019.8747179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 7th Palestinian International Conference on Electrical and Computer Engineering (PICECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICECE.2019.8747179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

目标是找到最佳的特征提取,它执行最小的特征向量长度并给出最高的性能。本文提出了一种利用两次多分辨率变换从人脸图像中提取有效特征的方法;波原子和shearlet,用于估计性别,种族,面部表情和年龄。用于进行最终估计的三种分类器分别是:人工神经网络(ANN)、支持向量机(SVM)和自组织映射(SOM)。通过比较研究确定了最佳的提取器和分类器。实验在一个大型数据库上进行,该数据库收集自三个不同的数据库:US Adult Faces, Extended Cohn-Kanade和FG-NET数据库。实验结果表明,与shearlet变换相比,采用波原子变换的方法在三种分类器中都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soft Biometrics Estimation Using Shearlet and Waveatom Transforms With Three Different Classifiers
The goal is to find the best feature extraction, which performs the smallest feature vector length and gives the highest performance. In this paper, we proposed a methodology to extract effective features from facial images using two multiresolution transforms; waveatom and shearlet, for estimating gender, ethnicity, facial expression and age. Three classifiers used to perform the final estimation, which are: Artificial Neural Network (ANN), Support vector machine (SVM) and Self-Organization Map (SOM). A comparative study is made to determine the best extractor and classifier. Experiments carried out on a large database collected from three different databases: US Adult Faces, Extended Cohn-Kanade and FG-NET database. The experimental results of the proposed methodology using waveatom transform proved to be effective in the three classifiers, In contrast of shearlet transform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信