最优冗余码的证候压缩

Jin Sima, Ryan Gabrys, Jehoshua Bruck
{"title":"最优冗余码的证候压缩","authors":"Jin Sima, Ryan Gabrys, Jehoshua Bruck","doi":"10.1109/ISIT44484.2020.9174009","DOIUrl":null,"url":null,"abstract":"We introduce a general technique that we call syndrome compression, for designing low-redundancy error correcting codes. The technique allows us to boost the redundancy efficiency of hash/labeling-based codes by further compressing the labeling. We apply syndrome compression to different types of adversarial deletion channels and present code constructions that correct up to a constant number of errors. Our code constructions achieve the redundancy of twice the Gilbert-Varshamov bound, which improve upon the state of art for these channels. The encoding/decoding complexity of our constructions is of order equal to the size of the corresponding deletion balls, namely, it is polynomial in the code length.","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Syndrome Compression for Optimal Redundancy Codes\",\"authors\":\"Jin Sima, Ryan Gabrys, Jehoshua Bruck\",\"doi\":\"10.1109/ISIT44484.2020.9174009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a general technique that we call syndrome compression, for designing low-redundancy error correcting codes. The technique allows us to boost the redundancy efficiency of hash/labeling-based codes by further compressing the labeling. We apply syndrome compression to different types of adversarial deletion channels and present code constructions that correct up to a constant number of errors. Our code constructions achieve the redundancy of twice the Gilbert-Varshamov bound, which improve upon the state of art for these channels. The encoding/decoding complexity of our constructions is of order equal to the size of the corresponding deletion balls, namely, it is polynomial in the code length.\",\"PeriodicalId\":159311,\"journal\":{\"name\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT44484.2020.9174009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9174009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

为了设计低冗余纠错码,我们引入了一种称为“综合征压缩”的通用技术。该技术允许我们通过进一步压缩标记来提高基于哈希/标记的代码的冗余效率。我们将综合征压缩应用于不同类型的对抗性删除通道,并提出了可以纠正恒定数量错误的代码结构。我们的代码结构实现了吉尔伯特-瓦尔沙莫夫界的两倍的冗余,这改进了这些信道的技术状态。我们构造的编码/解码复杂度与相应的删除球的大小是等次的,即它是编码长度的多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Syndrome Compression for Optimal Redundancy Codes
We introduce a general technique that we call syndrome compression, for designing low-redundancy error correcting codes. The technique allows us to boost the redundancy efficiency of hash/labeling-based codes by further compressing the labeling. We apply syndrome compression to different types of adversarial deletion channels and present code constructions that correct up to a constant number of errors. Our code constructions achieve the redundancy of twice the Gilbert-Varshamov bound, which improve upon the state of art for these channels. The encoding/decoding complexity of our constructions is of order equal to the size of the corresponding deletion balls, namely, it is polynomial in the code length.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信