学习用假肢在人体肌肉骨骼系统上行走

Ibrahim Hakki Durmus, H. Yalcin
{"title":"学习用假肢在人体肌肉骨骼系统上行走","authors":"Ibrahim Hakki Durmus, H. Yalcin","doi":"10.1109/SIU55565.2022.9864755","DOIUrl":null,"url":null,"abstract":"Incompetent design of prosthesis for amputees inflict pain in muscles and bones contingent to the prosthesis. Simulation models mimicking human movement promise a prosthesis with improved movement capability for amputees. Musculoskeletal models enable better anticipation of prosthesis contributions to the human musculoskeletal system during walking movement. In this paper, we apply a simulation of musculoskeletal model on an amputated human model with a prosthesis using Gaussian Process Regression Machine Learning Predictor and deep reinforcement learning. The performance of two versions of a prosthesis, one being a simpler version (passive prosthesis) and one being relatively better version (active prosthesis) are evaluated and compared to that of a healthy human model.","PeriodicalId":115446,"journal":{"name":"2022 30th Signal Processing and Communications Applications Conference (SIU)","volume":"30 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Walking on a Musculoskeletal Human System with a Prosthesis\",\"authors\":\"Ibrahim Hakki Durmus, H. Yalcin\",\"doi\":\"10.1109/SIU55565.2022.9864755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incompetent design of prosthesis for amputees inflict pain in muscles and bones contingent to the prosthesis. Simulation models mimicking human movement promise a prosthesis with improved movement capability for amputees. Musculoskeletal models enable better anticipation of prosthesis contributions to the human musculoskeletal system during walking movement. In this paper, we apply a simulation of musculoskeletal model on an amputated human model with a prosthesis using Gaussian Process Regression Machine Learning Predictor and deep reinforcement learning. The performance of two versions of a prosthesis, one being a simpler version (passive prosthesis) and one being relatively better version (active prosthesis) are evaluated and compared to that of a healthy human model.\",\"PeriodicalId\":115446,\"journal\":{\"name\":\"2022 30th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"30 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU55565.2022.9864755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU55565.2022.9864755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不合格的假肢设计对截肢者造成肌肉和骨骼的疼痛。模拟人体运动的仿真模型有望为截肢者提供具有改进运动能力的假肢。肌肉骨骼模型能够更好地预测假肢在步行运动期间对人体肌肉骨骼系统的贡献。在本文中,我们使用高斯过程回归机器学习预测器和深度强化学习对一个带有假肢的截肢人体模型进行了肌肉骨骼模型的模拟。评估两种版本的假体的性能,一种是更简单的版本(被动假体),一种是相对更好的版本(主动假体),并与健康人体模型进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Walking on a Musculoskeletal Human System with a Prosthesis
Incompetent design of prosthesis for amputees inflict pain in muscles and bones contingent to the prosthesis. Simulation models mimicking human movement promise a prosthesis with improved movement capability for amputees. Musculoskeletal models enable better anticipation of prosthesis contributions to the human musculoskeletal system during walking movement. In this paper, we apply a simulation of musculoskeletal model on an amputated human model with a prosthesis using Gaussian Process Regression Machine Learning Predictor and deep reinforcement learning. The performance of two versions of a prosthesis, one being a simpler version (passive prosthesis) and one being relatively better version (active prosthesis) are evaluated and compared to that of a healthy human model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信