{"title":"图网络作为交互金融系统关系推断的可学习引擎","authors":"Jiayu Pi, Yuan Deng","doi":"10.1145/3457682.3457713","DOIUrl":null,"url":null,"abstract":"Although the heterogeneous of financial markets is attracting interest both among scholars and practitioners, however, attention was almost exclusively given to networks in which all individuals were treated indifference, while neglecting all the extra information about the context-related or temporal-spatial properties of the interactions under study. Here introduces a new learnable relation inference model—based on graph networks—which implements an inference for entity- and relation-centric representations of multilayer, dynamical systems. The results show that as a learnable model, the approach supports accurate predictions from real and simulated data.","PeriodicalId":142045,"journal":{"name":"2021 13th International Conference on Machine Learning and Computing","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph Networks as Learnable Engines for Relations Inference of Interacting Financial Systems\",\"authors\":\"Jiayu Pi, Yuan Deng\",\"doi\":\"10.1145/3457682.3457713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the heterogeneous of financial markets is attracting interest both among scholars and practitioners, however, attention was almost exclusively given to networks in which all individuals were treated indifference, while neglecting all the extra information about the context-related or temporal-spatial properties of the interactions under study. Here introduces a new learnable relation inference model—based on graph networks—which implements an inference for entity- and relation-centric representations of multilayer, dynamical systems. The results show that as a learnable model, the approach supports accurate predictions from real and simulated data.\",\"PeriodicalId\":142045,\"journal\":{\"name\":\"2021 13th International Conference on Machine Learning and Computing\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 13th International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3457682.3457713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457682.3457713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Graph Networks as Learnable Engines for Relations Inference of Interacting Financial Systems
Although the heterogeneous of financial markets is attracting interest both among scholars and practitioners, however, attention was almost exclusively given to networks in which all individuals were treated indifference, while neglecting all the extra information about the context-related or temporal-spatial properties of the interactions under study. Here introduces a new learnable relation inference model—based on graph networks—which implements an inference for entity- and relation-centric representations of multilayer, dynamical systems. The results show that as a learnable model, the approach supports accurate predictions from real and simulated data.