不同核函数下人脸分类与KNN分类器的比较

B. Nassih, N. Hmina, A. Amine
{"title":"不同核函数下人脸分类与KNN分类器的比较","authors":"B. Nassih, N. Hmina, A. Amine","doi":"10.1109/CGIV.2016.52","DOIUrl":null,"url":null,"abstract":"In this paper, we present a comparative study between Daubechies-DCT approach, Discrete Cosine Transform (DCT) and Histograms of Oriented Gradient (HOG) under different kind of kernel function. We obtain Daubechies-DCT by fusing the DCT features and Daubechies features. The implementation of HOG achieved by dividing the face image into small connected regions, named cells, and for each cell compiling a histogram of gradient directions. We use the fusion of DCT and Daubechies wavelets then, HOG method to process face classification focused on SVM (Support Vector Machine) and KNN (K Nearest Neighbors) classifiers. The fusion features are inputted into SVM and KNN classifiers. Results show that the HOG with SVM-Rbf kernel function achieves the highest performance in terms of the detection rate which we obtained 96.5%. We present experimental results applied on MIT face database to demonstrate the effectiveness of a novel comparative study in terms of accuracy and running time.","PeriodicalId":351561,"journal":{"name":"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Face Classification under Different Kernel Function Compared to KNN Classifier\",\"authors\":\"B. Nassih, N. Hmina, A. Amine\",\"doi\":\"10.1109/CGIV.2016.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a comparative study between Daubechies-DCT approach, Discrete Cosine Transform (DCT) and Histograms of Oriented Gradient (HOG) under different kind of kernel function. We obtain Daubechies-DCT by fusing the DCT features and Daubechies features. The implementation of HOG achieved by dividing the face image into small connected regions, named cells, and for each cell compiling a histogram of gradient directions. We use the fusion of DCT and Daubechies wavelets then, HOG method to process face classification focused on SVM (Support Vector Machine) and KNN (K Nearest Neighbors) classifiers. The fusion features are inputted into SVM and KNN classifiers. Results show that the HOG with SVM-Rbf kernel function achieves the highest performance in terms of the detection rate which we obtained 96.5%. We present experimental results applied on MIT face database to demonstrate the effectiveness of a novel comparative study in terms of accuracy and running time.\",\"PeriodicalId\":351561,\"journal\":{\"name\":\"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CGIV.2016.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGIV.2016.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文对不同核函数下的Daubechies-DCT方法、离散余弦变换(DCT)和梯度直方图(HOG)进行了比较研究。我们通过融合DCT特征和Daubechies特征得到Daubechies-DCT。HOG的实现是通过将人脸图像划分为小的连通区域,命名为细胞,并为每个细胞编译梯度方向的直方图来实现的。然后将DCT和Daubechies小波融合,采用HOG方法对支持向量机(SVM)和K近邻(KNN)分类器进行人脸分类。将融合特征输入到SVM和KNN分类器中。结果表明,基于SVM-Rbf核函数的HOG检测率最高,达到96.5%。我们在麻省理工学院的人脸数据库上进行了实验,以证明一种新的比较研究在准确性和运行时间方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face Classification under Different Kernel Function Compared to KNN Classifier
In this paper, we present a comparative study between Daubechies-DCT approach, Discrete Cosine Transform (DCT) and Histograms of Oriented Gradient (HOG) under different kind of kernel function. We obtain Daubechies-DCT by fusing the DCT features and Daubechies features. The implementation of HOG achieved by dividing the face image into small connected regions, named cells, and for each cell compiling a histogram of gradient directions. We use the fusion of DCT and Daubechies wavelets then, HOG method to process face classification focused on SVM (Support Vector Machine) and KNN (K Nearest Neighbors) classifiers. The fusion features are inputted into SVM and KNN classifiers. Results show that the HOG with SVM-Rbf kernel function achieves the highest performance in terms of the detection rate which we obtained 96.5%. We present experimental results applied on MIT face database to demonstrate the effectiveness of a novel comparative study in terms of accuracy and running time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信