周期平稳噪声电磁场相关分析的周期频率识别

J. Russer, A. Baev, M. Haider, Y. Kuznetsov, P. Russer
{"title":"周期平稳噪声电磁场相关分析的周期频率识别","authors":"J. Russer, A. Baev, M. Haider, Y. Kuznetsov, P. Russer","doi":"10.1109/TELSIKS52058.2021.9606412","DOIUrl":null,"url":null,"abstract":"An accurate characterization of Gaussian stochastic electromagnetic (EM) fields can be achieved by auto- and cross correlation spectra. Multiple probes are required in a measurement setup for obtaining these correlation data. As the amount of data collected in such a measurement can be substantial, principal component analysis (PCA) can be utilized to reduce the complexity in the subsequent data processing and also for separating statistically independent sources. In cyclostationary problems, cycle frequencies need to be identified before formation of the correlation spectra. PCA is applied by an eigenvalue decomposition of the correlation matrix. Singular value decomposition of a Hankel matrix formed from the observed signal vector yields an identification of cycle frequencies.","PeriodicalId":228464,"journal":{"name":"2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Cycle Frequencies for Correlation Analysis of Cyclostationary Noisy EM Fields\",\"authors\":\"J. Russer, A. Baev, M. Haider, Y. Kuznetsov, P. Russer\",\"doi\":\"10.1109/TELSIKS52058.2021.9606412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An accurate characterization of Gaussian stochastic electromagnetic (EM) fields can be achieved by auto- and cross correlation spectra. Multiple probes are required in a measurement setup for obtaining these correlation data. As the amount of data collected in such a measurement can be substantial, principal component analysis (PCA) can be utilized to reduce the complexity in the subsequent data processing and also for separating statistically independent sources. In cyclostationary problems, cycle frequencies need to be identified before formation of the correlation spectra. PCA is applied by an eigenvalue decomposition of the correlation matrix. Singular value decomposition of a Hankel matrix formed from the observed signal vector yields an identification of cycle frequencies.\",\"PeriodicalId\":228464,\"journal\":{\"name\":\"2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELSIKS52058.2021.9606412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELSIKS52058.2021.9606412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用自相关谱和互相关谱可以精确地表征高斯随机电磁场。在一个测量装置中需要多个探头来获得这些相关数据。由于在这种测量中收集的数据量可能很大,因此可以使用主成分分析(PCA)来降低后续数据处理的复杂性,也可以用于分离统计独立的数据源。在循环平稳问题中,需要在相关谱形成之前确定周期频率。主成分分析是通过对相关矩阵进行特征值分解来实现的。对观察到的信号向量形成的汉克尔矩阵进行奇异值分解,得到周期频率的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Cycle Frequencies for Correlation Analysis of Cyclostationary Noisy EM Fields
An accurate characterization of Gaussian stochastic electromagnetic (EM) fields can be achieved by auto- and cross correlation spectra. Multiple probes are required in a measurement setup for obtaining these correlation data. As the amount of data collected in such a measurement can be substantial, principal component analysis (PCA) can be utilized to reduce the complexity in the subsequent data processing and also for separating statistically independent sources. In cyclostationary problems, cycle frequencies need to be identified before formation of the correlation spectra. PCA is applied by an eigenvalue decomposition of the correlation matrix. Singular value decomposition of a Hankel matrix formed from the observed signal vector yields an identification of cycle frequencies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信