{"title":"风电渗透输电网无功规划","authors":"Ming Niu, Zhao Xu","doi":"10.1109/ISGT-ASIA.2012.6303336","DOIUrl":null,"url":null,"abstract":"This paper proposes an application of Differential Evolution algorithm to power system reactive power planning with wind farms integration. The SVC device is used to minimize the real power losses and to improve the voltage profile during various operation scenarios disturbed by wind power variations. The model is also formulated as a constrained optimization problem, where the constraint is to let the voltage of connection point of the wind farms into the grid close to 1 p.u., which is formulated as a penalty function into the objective function. The reactive power optimization is tested in a modified version of the IEEE 30 bus test system for 6 scenarios of different wind speed levels based on Monte-Carlo simulations with satisfactory results.","PeriodicalId":330758,"journal":{"name":"IEEE PES Innovative Smart Grid Technologies","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Reactive power planning for transmission grids with wind power penetration\",\"authors\":\"Ming Niu, Zhao Xu\",\"doi\":\"10.1109/ISGT-ASIA.2012.6303336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an application of Differential Evolution algorithm to power system reactive power planning with wind farms integration. The SVC device is used to minimize the real power losses and to improve the voltage profile during various operation scenarios disturbed by wind power variations. The model is also formulated as a constrained optimization problem, where the constraint is to let the voltage of connection point of the wind farms into the grid close to 1 p.u., which is formulated as a penalty function into the objective function. The reactive power optimization is tested in a modified version of the IEEE 30 bus test system for 6 scenarios of different wind speed levels based on Monte-Carlo simulations with satisfactory results.\",\"PeriodicalId\":330758,\"journal\":{\"name\":\"IEEE PES Innovative Smart Grid Technologies\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE PES Innovative Smart Grid Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGT-ASIA.2012.6303336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE PES Innovative Smart Grid Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT-ASIA.2012.6303336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reactive power planning for transmission grids with wind power penetration
This paper proposes an application of Differential Evolution algorithm to power system reactive power planning with wind farms integration. The SVC device is used to minimize the real power losses and to improve the voltage profile during various operation scenarios disturbed by wind power variations. The model is also formulated as a constrained optimization problem, where the constraint is to let the voltage of connection point of the wind farms into the grid close to 1 p.u., which is formulated as a penalty function into the objective function. The reactive power optimization is tested in a modified version of the IEEE 30 bus test system for 6 scenarios of different wind speed levels based on Monte-Carlo simulations with satisfactory results.