基于隐马尔可夫模型的身体传感器网络心电分割

Huaming Li, Jindong Tan
{"title":"基于隐马尔可夫模型的身体传感器网络心电分割","authors":"Huaming Li, Jindong Tan","doi":"10.1109/ISSMDBS.2008.4575075","DOIUrl":null,"url":null,"abstract":"A novel approach for segmenting ECG signal in a body sensor network employing hidden Markov modeling (HMM) technique is presented. The parameter adaptation in traditional HMM methods is conservative and slow to respond to these beat interval changes. Inadequate and slow parameter adaptation is largely responsible for the low positive predictivity rate. To solve the problem, we introduce an active HMM parameter adaptation and ECG segmentation algorithm. Body sensor networks are used to pre-segment the raw ECG data by performing QRS detection. Instead of one single generic HMM, multiple individualized HMMs are used. Each HMM is only responsible for extracting the characteristic waveforms of the ECG signals with similar temporal features from the same group, so that the temporal parameter adaptation can be naturally achieved.","PeriodicalId":162608,"journal":{"name":"2008 IEEE International Symposium on Parallel and Distributed Processing","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ECG segmentation in a body sensor network using Hidden Markov Models\",\"authors\":\"Huaming Li, Jindong Tan\",\"doi\":\"10.1109/ISSMDBS.2008.4575075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel approach for segmenting ECG signal in a body sensor network employing hidden Markov modeling (HMM) technique is presented. The parameter adaptation in traditional HMM methods is conservative and slow to respond to these beat interval changes. Inadequate and slow parameter adaptation is largely responsible for the low positive predictivity rate. To solve the problem, we introduce an active HMM parameter adaptation and ECG segmentation algorithm. Body sensor networks are used to pre-segment the raw ECG data by performing QRS detection. Instead of one single generic HMM, multiple individualized HMMs are used. Each HMM is only responsible for extracting the characteristic waveforms of the ECG signals with similar temporal features from the same group, so that the temporal parameter adaptation can be naturally achieved.\",\"PeriodicalId\":162608,\"journal\":{\"name\":\"2008 IEEE International Symposium on Parallel and Distributed Processing\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Parallel and Distributed Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSMDBS.2008.4575075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Parallel and Distributed Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSMDBS.2008.4575075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种利用隐马尔可夫建模技术对身体传感器网络中心电信号进行分割的新方法。传统HMM方法的参数自适应比较保守,对这些拍频变化的响应较慢。不充分和缓慢的参数适应是造成低正预测率的主要原因。为了解决这一问题,我们引入了一种主动HMM参数自适应心电分割算法。身体传感器网络通过QRS检测对原始心电数据进行预分割。代替单一的通用HMM,使用多个个性化HMM。每个HMM只负责从同一组中提取具有相似时间特征的心电信号的特征波形,从而自然实现时间参数的自适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ECG segmentation in a body sensor network using Hidden Markov Models
A novel approach for segmenting ECG signal in a body sensor network employing hidden Markov modeling (HMM) technique is presented. The parameter adaptation in traditional HMM methods is conservative and slow to respond to these beat interval changes. Inadequate and slow parameter adaptation is largely responsible for the low positive predictivity rate. To solve the problem, we introduce an active HMM parameter adaptation and ECG segmentation algorithm. Body sensor networks are used to pre-segment the raw ECG data by performing QRS detection. Instead of one single generic HMM, multiple individualized HMMs are used. Each HMM is only responsible for extracting the characteristic waveforms of the ECG signals with similar temporal features from the same group, so that the temporal parameter adaptation can be naturally achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信