基于两层感知器网络的最大熵非线性盲源分离方法

Wei Li, Huizhong Yang
{"title":"基于两层感知器网络的最大熵非线性盲源分离方法","authors":"Wei Li, Huizhong Yang","doi":"10.1109/ICCA.2013.6564969","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of blind separation of nonlinear mixed signals. A nonlinear blind source separation method is developed, in which a two-layer perceptron network is employed as the separating system to separate sources from the observed non-linear mixture signals. The learning algorithms for the parameters of the separating system are derived based on the maximum entropy (ME) criterion. Instead of choosing non-linear functions empirically, the nonparametric kernel density estimation is exploited to estimate the score function of the perceptron's outputs directly. Simulations show good performance of the proposed algorithm.","PeriodicalId":336534,"journal":{"name":"2013 10th IEEE International Conference on Control and Automation (ICCA)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A maximum entropy based nonlinear blind source separation approach using a two-layer perceptron network\",\"authors\":\"Wei Li, Huizhong Yang\",\"doi\":\"10.1109/ICCA.2013.6564969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of blind separation of nonlinear mixed signals. A nonlinear blind source separation method is developed, in which a two-layer perceptron network is employed as the separating system to separate sources from the observed non-linear mixture signals. The learning algorithms for the parameters of the separating system are derived based on the maximum entropy (ME) criterion. Instead of choosing non-linear functions empirically, the nonparametric kernel density estimation is exploited to estimate the score function of the perceptron's outputs directly. Simulations show good performance of the proposed algorithm.\",\"PeriodicalId\":336534,\"journal\":{\"name\":\"2013 10th IEEE International Conference on Control and Automation (ICCA)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th IEEE International Conference on Control and Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2013.6564969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th IEEE International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2013.6564969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了非线性混合信号的盲分离问题。提出了一种非线性盲源分离方法,该方法采用双层感知器网络作为分离系统,从观测到的非线性混合信号中分离出盲源。基于最大熵准则推导了分离系统参数的学习算法。利用非参数核密度估计来直接估计感知器输出的分数函数,而不是经验地选择非线性函数。仿真结果表明,该算法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A maximum entropy based nonlinear blind source separation approach using a two-layer perceptron network
This paper addresses the problem of blind separation of nonlinear mixed signals. A nonlinear blind source separation method is developed, in which a two-layer perceptron network is employed as the separating system to separate sources from the observed non-linear mixture signals. The learning algorithms for the parameters of the separating system are derived based on the maximum entropy (ME) criterion. Instead of choosing non-linear functions empirically, the nonparametric kernel density estimation is exploited to estimate the score function of the perceptron's outputs directly. Simulations show good performance of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信