烧结矿熔点遗传神经网络的建立

Wushan Cheng, M. Fei
{"title":"烧结矿熔点遗传神经网络的建立","authors":"Wushan Cheng, M. Fei","doi":"10.1109/ICIA.2004.1373416","DOIUrl":null,"url":null,"abstract":"This paper presents the genetic-neural network for sinter's burning through point since BTP control is the most important, which is tightly coupled with sinter ore quality. In offline, advanced genetic algorithm (GA) is used to optimize the original connection weights and thresholds, and during online, hybrid neural network (HNN) inherited from the principle of backpropagation is used to train the map parameters and improve the system precision in each sampling period. The results obtained from the actual process demonstrate that the performance and capability of the proposed system are superior.","PeriodicalId":297178,"journal":{"name":"International Conference on Information Acquisition, 2004. Proceedings.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A building of the genetic-neural network for sinter's burning through point\",\"authors\":\"Wushan Cheng, M. Fei\",\"doi\":\"10.1109/ICIA.2004.1373416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the genetic-neural network for sinter's burning through point since BTP control is the most important, which is tightly coupled with sinter ore quality. In offline, advanced genetic algorithm (GA) is used to optimize the original connection weights and thresholds, and during online, hybrid neural network (HNN) inherited from the principle of backpropagation is used to train the map parameters and improve the system precision in each sampling period. The results obtained from the actual process demonstrate that the performance and capability of the proposed system are superior.\",\"PeriodicalId\":297178,\"journal\":{\"name\":\"International Conference on Information Acquisition, 2004. Proceedings.\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Information Acquisition, 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIA.2004.1373416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Acquisition, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIA.2004.1373416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

由于BTP控制是烧结矿烧透点控制的重中之重,且与烧结矿质量密切相关,本文提出了基于遗传神经网络的烧结矿烧透点控制方法。离线时,采用先进的遗传算法(GA)优化原始连接权值和阈值;在线时,采用继承反向传播原理的混合神经网络(HNN)训练映射参数,提高系统在每个采样周期的精度。实际生产过程的结果表明,该系统具有较好的性能和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A building of the genetic-neural network for sinter's burning through point
This paper presents the genetic-neural network for sinter's burning through point since BTP control is the most important, which is tightly coupled with sinter ore quality. In offline, advanced genetic algorithm (GA) is used to optimize the original connection weights and thresholds, and during online, hybrid neural network (HNN) inherited from the principle of backpropagation is used to train the map parameters and improve the system precision in each sampling period. The results obtained from the actual process demonstrate that the performance and capability of the proposed system are superior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信