基于矩阵分裂的一般不动点法求解线性互补问题

B. Kumar, Deepmala, Arup K Das
{"title":"基于矩阵分裂的一般不动点法求解线性互补问题","authors":"B. Kumar, Deepmala, Arup K Das","doi":"10.33993/jnaat512-1285","DOIUrl":null,"url":null,"abstract":"In this article, we introduce a modified fixed point method to process the large and sparse linear complementarity problem (LCP) and formulate an equivalent fixed point equation for the LCP and show the equivalence. Also, we provide convergence conditions when the system matrix is a \\(P\\)-matrix and two sufficient convergence conditions when the system matrix is an \\(H_+\\)-matrix. To show the efficiency of our proposed method, we illustrate two numerical examples for different parameters.","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On general fixed point method based on matrix splitting for solving linear complementarity problem\",\"authors\":\"B. Kumar, Deepmala, Arup K Das\",\"doi\":\"10.33993/jnaat512-1285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we introduce a modified fixed point method to process the large and sparse linear complementarity problem (LCP) and formulate an equivalent fixed point equation for the LCP and show the equivalence. Also, we provide convergence conditions when the system matrix is a \\\\(P\\\\)-matrix and two sufficient convergence conditions when the system matrix is an \\\\(H_+\\\\)-matrix. To show the efficiency of our proposed method, we illustrate two numerical examples for different parameters.\",\"PeriodicalId\":287022,\"journal\":{\"name\":\"Journal of Numerical Analysis and Approximation Theory\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Analysis and Approximation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33993/jnaat512-1285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat512-1285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文引入一种改进的不动点方法来处理大而稀疏的线性互补问题,给出了该问题的等价不动点方程,并证明了其等价性。同时给出了系统矩阵为\(P\) -矩阵时的收敛条件和系统矩阵为\(H_+\) -矩阵时的两个充分收敛条件。为了证明该方法的有效性,给出了两个不同参数下的数值算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On general fixed point method based on matrix splitting for solving linear complementarity problem
In this article, we introduce a modified fixed point method to process the large and sparse linear complementarity problem (LCP) and formulate an equivalent fixed point equation for the LCP and show the equivalence. Also, we provide convergence conditions when the system matrix is a \(P\)-matrix and two sufficient convergence conditions when the system matrix is an \(H_+\)-matrix. To show the efficiency of our proposed method, we illustrate two numerical examples for different parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信