Mohammed Bekhiet Elsayed, A. Abdelsalam, E. Rashad
{"title":"磁饱和对超同步串联绕线转子异步电动机性能的影响","authors":"Mohammed Bekhiet Elsayed, A. Abdelsalam, E. Rashad","doi":"10.1109/MEPCON50283.2021.9686281","DOIUrl":null,"url":null,"abstract":"Series-connected wound-rotor induction motor (SCWRIM) is capable of operation at two modes according to the rotor speed. In the first mode, the motor has a general behavior similar to that of the conventional induction motor, including running at a speed less than synchronous speed. So, it is called sub-synchronous mode. The second mode is called super-synchronous mode, in which the speed reaches twice the synchronous speed with the absence of inherent starting torque capability. In both modes, the stator and rotor windings of a slip-ring induction machine are connected in series with a proper phase sequence. This paper presents theoretical and experimental investigation of magnetic saturation effect on the steady state performance of SCWRIM in super-synchronous mode. The effect of saturation on both direct and quadrature axes inductances are considered. The motor starting to that mode has been achieved using scalar control technique via a variable voltage variable frequency (VVVF) supply. A laboratory set-up has been prepared and implemented to get experimental results that showed the applicability of the given analysis to obtain more accurate steady-state performance characteristics.","PeriodicalId":141478,"journal":{"name":"2021 22nd International Middle East Power Systems Conference (MEPCON)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of Magnetic Saturation on Performance of Series-Connected Wound-Rotor Induction Motors in Super-Synchronous Mode\",\"authors\":\"Mohammed Bekhiet Elsayed, A. Abdelsalam, E. Rashad\",\"doi\":\"10.1109/MEPCON50283.2021.9686281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Series-connected wound-rotor induction motor (SCWRIM) is capable of operation at two modes according to the rotor speed. In the first mode, the motor has a general behavior similar to that of the conventional induction motor, including running at a speed less than synchronous speed. So, it is called sub-synchronous mode. The second mode is called super-synchronous mode, in which the speed reaches twice the synchronous speed with the absence of inherent starting torque capability. In both modes, the stator and rotor windings of a slip-ring induction machine are connected in series with a proper phase sequence. This paper presents theoretical and experimental investigation of magnetic saturation effect on the steady state performance of SCWRIM in super-synchronous mode. The effect of saturation on both direct and quadrature axes inductances are considered. The motor starting to that mode has been achieved using scalar control technique via a variable voltage variable frequency (VVVF) supply. A laboratory set-up has been prepared and implemented to get experimental results that showed the applicability of the given analysis to obtain more accurate steady-state performance characteristics.\",\"PeriodicalId\":141478,\"journal\":{\"name\":\"2021 22nd International Middle East Power Systems Conference (MEPCON)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 22nd International Middle East Power Systems Conference (MEPCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEPCON50283.2021.9686281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 22nd International Middle East Power Systems Conference (MEPCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEPCON50283.2021.9686281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Magnetic Saturation on Performance of Series-Connected Wound-Rotor Induction Motors in Super-Synchronous Mode
Series-connected wound-rotor induction motor (SCWRIM) is capable of operation at two modes according to the rotor speed. In the first mode, the motor has a general behavior similar to that of the conventional induction motor, including running at a speed less than synchronous speed. So, it is called sub-synchronous mode. The second mode is called super-synchronous mode, in which the speed reaches twice the synchronous speed with the absence of inherent starting torque capability. In both modes, the stator and rotor windings of a slip-ring induction machine are connected in series with a proper phase sequence. This paper presents theoretical and experimental investigation of magnetic saturation effect on the steady state performance of SCWRIM in super-synchronous mode. The effect of saturation on both direct and quadrature axes inductances are considered. The motor starting to that mode has been achieved using scalar control technique via a variable voltage variable frequency (VVVF) supply. A laboratory set-up has been prepared and implemented to get experimental results that showed the applicability of the given analysis to obtain more accurate steady-state performance characteristics.