Yang Zhang, Xin Qian, Qidi You, Xuan Zhou, Xiyong Zhang, Yang Wang
{"title":"一种计算小因子多项式最大公项的概率算法","authors":"Yang Zhang, Xin Qian, Qidi You, Xuan Zhou, Xiyong Zhang, Yang Wang","doi":"10.5121/mathsj.2022.9301","DOIUrl":null,"url":null,"abstract":"In the earlier work, Knuth present an algorithm to decrease the coefficient growth in the Euclidean algorithm of polynomials called subresultant algorithm. However, the output polynomials may have a small factor which can be removed. Then later, Brown of Bell Telephone Laboratories showed the subresultant in another way by adding a variant called 𝜏 and gave a way to compute the variant. Nevertheless, the way failed to determine every𝜏 correctly. In this paper, we will give a probabilistic algorithm to determine the variant 𝜏 correctly in most cases by adding a few steps instead of computing 𝑡(𝑥) when given 𝑓(𝑥) and𝑔(𝑥) ∈ ℤ[𝑥], where 𝑡(𝑥) satisfies that 𝑠(𝑥)𝑓(𝑥) + 𝑡(𝑥)𝑔(𝑥) = 𝑟(𝑥), here 𝑡(𝑥), 𝑠(𝑥) ∈ ℤ[𝑥]","PeriodicalId":276601,"journal":{"name":"Applied Mathematics and Sciences An International Journal (MathSJ)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Probabilistic Algorithm for Computation of Polynomial Greatest Common with Smaller Factors\",\"authors\":\"Yang Zhang, Xin Qian, Qidi You, Xuan Zhou, Xiyong Zhang, Yang Wang\",\"doi\":\"10.5121/mathsj.2022.9301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the earlier work, Knuth present an algorithm to decrease the coefficient growth in the Euclidean algorithm of polynomials called subresultant algorithm. However, the output polynomials may have a small factor which can be removed. Then later, Brown of Bell Telephone Laboratories showed the subresultant in another way by adding a variant called 𝜏 and gave a way to compute the variant. Nevertheless, the way failed to determine every𝜏 correctly. In this paper, we will give a probabilistic algorithm to determine the variant 𝜏 correctly in most cases by adding a few steps instead of computing 𝑡(𝑥) when given 𝑓(𝑥) and𝑔(𝑥) ∈ ℤ[𝑥], where 𝑡(𝑥) satisfies that 𝑠(𝑥)𝑓(𝑥) + 𝑡(𝑥)𝑔(𝑥) = 𝑟(𝑥), here 𝑡(𝑥), 𝑠(𝑥) ∈ ℤ[𝑥]\",\"PeriodicalId\":276601,\"journal\":{\"name\":\"Applied Mathematics and Sciences An International Journal (MathSJ)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Sciences An International Journal (MathSJ)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/mathsj.2022.9301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Sciences An International Journal (MathSJ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/mathsj.2022.9301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with Smaller Factors
In the earlier work, Knuth present an algorithm to decrease the coefficient growth in the Euclidean algorithm of polynomials called subresultant algorithm. However, the output polynomials may have a small factor which can be removed. Then later, Brown of Bell Telephone Laboratories showed the subresultant in another way by adding a variant called 𝜏 and gave a way to compute the variant. Nevertheless, the way failed to determine every𝜏 correctly. In this paper, we will give a probabilistic algorithm to determine the variant 𝜏 correctly in most cases by adding a few steps instead of computing 𝑡(𝑥) when given 𝑓(𝑥) and𝑔(𝑥) ∈ ℤ[𝑥], where 𝑡(𝑥) satisfies that 𝑠(𝑥)𝑓(𝑥) + 𝑡(𝑥)𝑔(𝑥) = 𝑟(𝑥), here 𝑡(𝑥), 𝑠(𝑥) ∈ ℤ[𝑥]