纤毛上皮的纹理特征分类

Frantisek Jabloncík, L. Hargaš, D. Koniar, Jaroslav Bulava, Boucif Beddad
{"title":"纤毛上皮的纹理特征分类","authors":"Frantisek Jabloncík, L. Hargaš, D. Koniar, Jaroslav Bulava, Boucif Beddad","doi":"10.1109/ELEKTRO49696.2020.9130649","DOIUrl":null,"url":null,"abstract":"This article deals with the design of automated methods for the segmentation of ciliated epithelium in microscopic images. The proposed method is based on texture analysis of image and subsequent classification of these parameters into 3 classes: epithelial cells, cilia and background. The aim of the work is to find the best combination of initial conditions of segmentation. An output of the algorithm is an original microscopic image with highlighted regions assumed to be cilia.","PeriodicalId":165069,"journal":{"name":"2020 ELEKTRO","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ciliated epithelium segmentation using texture features classification\",\"authors\":\"Frantisek Jabloncík, L. Hargaš, D. Koniar, Jaroslav Bulava, Boucif Beddad\",\"doi\":\"10.1109/ELEKTRO49696.2020.9130649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article deals with the design of automated methods for the segmentation of ciliated epithelium in microscopic images. The proposed method is based on texture analysis of image and subsequent classification of these parameters into 3 classes: epithelial cells, cilia and background. The aim of the work is to find the best combination of initial conditions of segmentation. An output of the algorithm is an original microscopic image with highlighted regions assumed to be cilia.\",\"PeriodicalId\":165069,\"journal\":{\"name\":\"2020 ELEKTRO\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 ELEKTRO\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELEKTRO49696.2020.9130649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 ELEKTRO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELEKTRO49696.2020.9130649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了显微镜图像中纤毛上皮分割的自动方法设计。该方法基于图像的纹理分析,然后将这些参数分为3类:上皮细胞、纤毛和背景。该工作的目的是找到分割初始条件的最佳组合。该算法的输出是原始显微图像,其中高亮显示的区域被认为是纤毛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ciliated epithelium segmentation using texture features classification
This article deals with the design of automated methods for the segmentation of ciliated epithelium in microscopic images. The proposed method is based on texture analysis of image and subsequent classification of these parameters into 3 classes: epithelial cells, cilia and background. The aim of the work is to find the best combination of initial conditions of segmentation. An output of the algorithm is an original microscopic image with highlighted regions assumed to be cilia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信