基于自主神经网络的GPS/INS集成性能比较

M. Malleswaran, V. Vaidehi, M. Jebarsi
{"title":"基于自主神经网络的GPS/INS集成性能比较","authors":"M. Malleswaran, V. Vaidehi, M. Jebarsi","doi":"10.1109/ICOAC.2011.6165209","DOIUrl":null,"url":null,"abstract":"In positioning and navigation applications, Inertial navigation system (INS) and Global positioning system (GPS) technologies have been widely utilized. Each system has its own unique characteristics and limitations. Therefore, the integration of the two systems offers a number of advantages and overcomes each system inadequacies. The proposed schemes are implemented using the Autonomous neural networks (AUNN) — the cascade correlation network (CCN) and the Feedback cascade correlation network (FBCCN) that was able to construct the topology by itself autonomously on the fly and achieve prediction performance with less hidden neurons.","PeriodicalId":369712,"journal":{"name":"2011 Third International Conference on Advanced Computing","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Peformance comparison of Autonomous neural network based GPS/INS integration\",\"authors\":\"M. Malleswaran, V. Vaidehi, M. Jebarsi\",\"doi\":\"10.1109/ICOAC.2011.6165209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In positioning and navigation applications, Inertial navigation system (INS) and Global positioning system (GPS) technologies have been widely utilized. Each system has its own unique characteristics and limitations. Therefore, the integration of the two systems offers a number of advantages and overcomes each system inadequacies. The proposed schemes are implemented using the Autonomous neural networks (AUNN) — the cascade correlation network (CCN) and the Feedback cascade correlation network (FBCCN) that was able to construct the topology by itself autonomously on the fly and achieve prediction performance with less hidden neurons.\",\"PeriodicalId\":369712,\"journal\":{\"name\":\"2011 Third International Conference on Advanced Computing\",\"volume\":\"152 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Third International Conference on Advanced Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOAC.2011.6165209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Third International Conference on Advanced Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOAC.2011.6165209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在定位导航应用中,惯性导航系统(INS)和全球定位系统(GPS)技术得到了广泛的应用。每个系统都有其独特的特点和局限性。因此,两种制度的融合提供了许多优点,并克服了各自制度的不足。所提出的方案是使用自治神经网络(AUNN) -级联相关网络(CCN)和反馈级联相关网络(FBCCN)来实现的,该网络能够在动态中自主构建拓扑结构,并且具有较少隐藏神经元的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Peformance comparison of Autonomous neural network based GPS/INS integration
In positioning and navigation applications, Inertial navigation system (INS) and Global positioning system (GPS) technologies have been widely utilized. Each system has its own unique characteristics and limitations. Therefore, the integration of the two systems offers a number of advantages and overcomes each system inadequacies. The proposed schemes are implemented using the Autonomous neural networks (AUNN) — the cascade correlation network (CCN) and the Feedback cascade correlation network (FBCCN) that was able to construct the topology by itself autonomously on the fly and achieve prediction performance with less hidden neurons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信