David Tian, Jiamei Deng, E. Zio, F. Maio, Fu-cheng Liao
{"title":"核系统故障模式的机器学习检测","authors":"David Tian, Jiamei Deng, E. Zio, F. Maio, Fu-cheng Liao","doi":"10.1109/DSA.2018.00017","DOIUrl":null,"url":null,"abstract":"Early detection of the failure of a nuclear system is an important topic in nuclear energy. This paper proposes three machine learning methodologies to detect the failure modes (FM) of the Lead-Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS) nuclear system after the first 10%, 50% and 90% time periods of the 3000 seconds mission time of the LBEXADS. The first methodology detects the FM of the LBE-XADS after the first 10% time period and consists of two Gaussian mixture-based (GM-based) classifiers. The second methodology detects the FM of the LBE-XADS after the first 50% time period and consists of a GM-based classifier and a neural network MLP1. The third methodology detects the failure mode of the LBE-XADS after the first 90% time period and consists of a GM-based classifier and a neural network MLP2. The three proposed methodologies outperformed the fuzzy similarity approach of the previous work.","PeriodicalId":117496,"journal":{"name":"2018 5th International Conference on Dependable Systems and Their Applications (DSA)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Failure Modes Detection of Nuclear Systems Using Machine Learning\",\"authors\":\"David Tian, Jiamei Deng, E. Zio, F. Maio, Fu-cheng Liao\",\"doi\":\"10.1109/DSA.2018.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early detection of the failure of a nuclear system is an important topic in nuclear energy. This paper proposes three machine learning methodologies to detect the failure modes (FM) of the Lead-Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS) nuclear system after the first 10%, 50% and 90% time periods of the 3000 seconds mission time of the LBEXADS. The first methodology detects the FM of the LBE-XADS after the first 10% time period and consists of two Gaussian mixture-based (GM-based) classifiers. The second methodology detects the FM of the LBE-XADS after the first 50% time period and consists of a GM-based classifier and a neural network MLP1. The third methodology detects the failure mode of the LBE-XADS after the first 90% time period and consists of a GM-based classifier and a neural network MLP2. The three proposed methodologies outperformed the fuzzy similarity approach of the previous work.\",\"PeriodicalId\":117496,\"journal\":{\"name\":\"2018 5th International Conference on Dependable Systems and Their Applications (DSA)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 5th International Conference on Dependable Systems and Their Applications (DSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSA.2018.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Dependable Systems and Their Applications (DSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSA.2018.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Failure Modes Detection of Nuclear Systems Using Machine Learning
Early detection of the failure of a nuclear system is an important topic in nuclear energy. This paper proposes three machine learning methodologies to detect the failure modes (FM) of the Lead-Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS) nuclear system after the first 10%, 50% and 90% time periods of the 3000 seconds mission time of the LBEXADS. The first methodology detects the FM of the LBE-XADS after the first 10% time period and consists of two Gaussian mixture-based (GM-based) classifiers. The second methodology detects the FM of the LBE-XADS after the first 50% time period and consists of a GM-based classifier and a neural network MLP1. The third methodology detects the failure mode of the LBE-XADS after the first 90% time period and consists of a GM-based classifier and a neural network MLP2. The three proposed methodologies outperformed the fuzzy similarity approach of the previous work.