核系统故障模式的机器学习检测

David Tian, Jiamei Deng, E. Zio, F. Maio, Fu-cheng Liao
{"title":"核系统故障模式的机器学习检测","authors":"David Tian, Jiamei Deng, E. Zio, F. Maio, Fu-cheng Liao","doi":"10.1109/DSA.2018.00017","DOIUrl":null,"url":null,"abstract":"Early detection of the failure of a nuclear system is an important topic in nuclear energy. This paper proposes three machine learning methodologies to detect the failure modes (FM) of the Lead-Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS) nuclear system after the first 10%, 50% and 90% time periods of the 3000 seconds mission time of the LBEXADS. The first methodology detects the FM of the LBE-XADS after the first 10% time period and consists of two Gaussian mixture-based (GM-based) classifiers. The second methodology detects the FM of the LBE-XADS after the first 50% time period and consists of a GM-based classifier and a neural network MLP1. The third methodology detects the failure mode of the LBE-XADS after the first 90% time period and consists of a GM-based classifier and a neural network MLP2. The three proposed methodologies outperformed the fuzzy similarity approach of the previous work.","PeriodicalId":117496,"journal":{"name":"2018 5th International Conference on Dependable Systems and Their Applications (DSA)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Failure Modes Detection of Nuclear Systems Using Machine Learning\",\"authors\":\"David Tian, Jiamei Deng, E. Zio, F. Maio, Fu-cheng Liao\",\"doi\":\"10.1109/DSA.2018.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early detection of the failure of a nuclear system is an important topic in nuclear energy. This paper proposes three machine learning methodologies to detect the failure modes (FM) of the Lead-Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS) nuclear system after the first 10%, 50% and 90% time periods of the 3000 seconds mission time of the LBEXADS. The first methodology detects the FM of the LBE-XADS after the first 10% time period and consists of two Gaussian mixture-based (GM-based) classifiers. The second methodology detects the FM of the LBE-XADS after the first 50% time period and consists of a GM-based classifier and a neural network MLP1. The third methodology detects the failure mode of the LBE-XADS after the first 90% time period and consists of a GM-based classifier and a neural network MLP2. The three proposed methodologies outperformed the fuzzy similarity approach of the previous work.\",\"PeriodicalId\":117496,\"journal\":{\"name\":\"2018 5th International Conference on Dependable Systems and Their Applications (DSA)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 5th International Conference on Dependable Systems and Their Applications (DSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSA.2018.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Dependable Systems and Their Applications (DSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSA.2018.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

核系统故障的早期检测是核能领域的一个重要课题。本文提出了三种机器学习方法来检测铅铋共晶实验加速器驱动系统(LBE-XADS)核系统在3000秒任务时间的前10%、50%和90%的失效模式(FM)。第一种方法检测LBE-XADS在前10%时间段后的FM,并由两个基于高斯混合(gm)的分类器组成。第二种方法在前50%时间段后检测LBE-XADS的FM,由基于gm的分类器和神经网络MLP1组成。第三种方法检测LBE-XADS在前90%时间段后的故障模式,由基于gm的分类器和神经网络MLP2组成。提出的三种方法优于以前工作的模糊相似方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Failure Modes Detection of Nuclear Systems Using Machine Learning
Early detection of the failure of a nuclear system is an important topic in nuclear energy. This paper proposes three machine learning methodologies to detect the failure modes (FM) of the Lead-Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS) nuclear system after the first 10%, 50% and 90% time periods of the 3000 seconds mission time of the LBEXADS. The first methodology detects the FM of the LBE-XADS after the first 10% time period and consists of two Gaussian mixture-based (GM-based) classifiers. The second methodology detects the FM of the LBE-XADS after the first 50% time period and consists of a GM-based classifier and a neural network MLP1. The third methodology detects the failure mode of the LBE-XADS after the first 90% time period and consists of a GM-based classifier and a neural network MLP2. The three proposed methodologies outperformed the fuzzy similarity approach of the previous work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信