从欧几里得的观点来看,在某些相对情况下有限域上曲线的点数

E. Hallouin, Marc Perret
{"title":"从欧几里得的观点来看,在某些相对情况下有限域上曲线的点数","authors":"E. Hallouin, Marc Perret","doi":"10.5802/JTNB.1155","DOIUrl":null,"url":null,"abstract":"We study the number of rational points of smooth projective curves over finite fields in some relative situations in the spirit of a previous paper [HP19] from an euclidean point of vue. We prove some kinds of relative Weil bounds, derived from Schwarz inequality for some \"relative parts\" of the diagonal and of the graph of the Frobenius on some euclidean sub-spaces of the numerical space of the squared curve endowed with the opposite of the intersection product.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Number of points of curves over finite fields in some relative situations from an euclidean point of view\",\"authors\":\"E. Hallouin, Marc Perret\",\"doi\":\"10.5802/JTNB.1155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the number of rational points of smooth projective curves over finite fields in some relative situations in the spirit of a previous paper [HP19] from an euclidean point of vue. We prove some kinds of relative Weil bounds, derived from Schwarz inequality for some \\\"relative parts\\\" of the diagonal and of the graph of the Frobenius on some euclidean sub-spaces of the numerical space of the squared curve endowed with the opposite of the intersection product.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/JTNB.1155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/JTNB.1155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们借鉴上一篇论文[HP19]的精神,从欧几里得值点出发,研究了有限域上光滑投影曲线在一些相对情况下的有理点的个数。在赋与交积相反的平方曲线数值空间的欧几里得子空间上,我们证明了由Schwarz不等式导出的对角线和Frobenius图的某些“相对部分”的几种相对Weil界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Number of points of curves over finite fields in some relative situations from an euclidean point of view
We study the number of rational points of smooth projective curves over finite fields in some relative situations in the spirit of a previous paper [HP19] from an euclidean point of vue. We prove some kinds of relative Weil bounds, derived from Schwarz inequality for some "relative parts" of the diagonal and of the graph of the Frobenius on some euclidean sub-spaces of the numerical space of the squared curve endowed with the opposite of the intersection product.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信