无约束分布式优化的量化设计

Ye Pu, M. Zeilinger, C. Jones
{"title":"无约束分布式优化的量化设计","authors":"Ye Pu, M. Zeilinger, C. Jones","doi":"10.1109/ACC.2015.7170901","DOIUrl":null,"url":null,"abstract":"We consider an unconstrained distributed optimization problem and assume that the bit rate of the communication in the network is limited. We propose a distributed optimization algorithm with an iteratively refining quantization design, which bounds the quantization errors and ensures convergence to the global optimum. We present conditions on the bit rate and the initial quantization intervals for convergence, and show that as the bit rate increases, the corresponding minimum initial quantization intervals decrease. We prove that after imposing the quantization scheme, the algorithm still provides a linear convergence rate, and furthermore derive an upper bound on the number of iterations to achieve a given accuracy. Finally, we demonstrate the performance of the proposed algorithm and the theoretical findings for solving a randomly generated example of a distributed least squares problem.","PeriodicalId":223665,"journal":{"name":"2015 American Control Conference (ACC)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Quantization design for unconstrained distributed optimization\",\"authors\":\"Ye Pu, M. Zeilinger, C. Jones\",\"doi\":\"10.1109/ACC.2015.7170901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider an unconstrained distributed optimization problem and assume that the bit rate of the communication in the network is limited. We propose a distributed optimization algorithm with an iteratively refining quantization design, which bounds the quantization errors and ensures convergence to the global optimum. We present conditions on the bit rate and the initial quantization intervals for convergence, and show that as the bit rate increases, the corresponding minimum initial quantization intervals decrease. We prove that after imposing the quantization scheme, the algorithm still provides a linear convergence rate, and furthermore derive an upper bound on the number of iterations to achieve a given accuracy. Finally, we demonstrate the performance of the proposed algorithm and the theoretical findings for solving a randomly generated example of a distributed least squares problem.\",\"PeriodicalId\":223665,\"journal\":{\"name\":\"2015 American Control Conference (ACC)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2015.7170901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2015.7170901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们考虑一个无约束的分布式优化问题,并假设网络中通信的比特率是有限的。我们提出了一种采用迭代细化量化设计的分布式优化算法,该算法限制了量化误差并保证收敛到全局最优。我们给出了比特率和初始量化间隔收敛的条件,并表明随着比特率的增加,相应的最小初始量化间隔减小。我们证明了在施加量化方案后,算法仍然提供线性收敛速度,并进一步导出了达到给定精度的迭代次数的上界。最后,我们展示了所提出的算法的性能和解决随机生成的分布式最小二乘问题的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantization design for unconstrained distributed optimization
We consider an unconstrained distributed optimization problem and assume that the bit rate of the communication in the network is limited. We propose a distributed optimization algorithm with an iteratively refining quantization design, which bounds the quantization errors and ensures convergence to the global optimum. We present conditions on the bit rate and the initial quantization intervals for convergence, and show that as the bit rate increases, the corresponding minimum initial quantization intervals decrease. We prove that after imposing the quantization scheme, the algorithm still provides a linear convergence rate, and furthermore derive an upper bound on the number of iterations to achieve a given accuracy. Finally, we demonstrate the performance of the proposed algorithm and the theoretical findings for solving a randomly generated example of a distributed least squares problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信