中性点接地电阻对短时均方根电压变化的影响评价

L. A. D. Costa, Younes Mohammadi, R. Leborgne, D. Gazzana
{"title":"中性点接地电阻对短时均方根电压变化的影响评价","authors":"L. A. D. Costa, Younes Mohammadi, R. Leborgne, D. Gazzana","doi":"10.1109/ICHQP46026.2020.9177891","DOIUrl":null,"url":null,"abstract":"Neutral-grounding resistors are employed on transmission, distribution and industrial electric power systems to achieve, among other goals, a limited magnitude of the ground-fault current. The impedance connected between a neutral point and the ground influences the total zero-sequence impedance of a system, which impacts voltages during ground faults. Therefore, there is a relation between the grounding scheme and voltage disturbances, like the short-duration rms voltage variations (SDVVs), which include interruptions, sags, and swells. Hence, this paper presents an analytical evaluation of the influence of the neutral-grounding resistance on SDVVs during single-phase-to-ground (LG) and two-phase-to-ground (LLG) faults for an industrial system. It is observed that the influence occurs mainly on phase-to-ground voltages, there being an impact on phase-to-neutral or phase-to-phase ones just for a few values of fault resistance. The results thus indicate better neutral grounding practices for industrial systems and show the best load connections, concerning SDVVs and equipment tripping.","PeriodicalId":436720,"journal":{"name":"2020 19th International Conference on Harmonics and Quality of Power (ICHQP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Impact Evaluation of the Neutral-Grounding Resistance on Short-Duration RMS Voltage Variations\",\"authors\":\"L. A. D. Costa, Younes Mohammadi, R. Leborgne, D. Gazzana\",\"doi\":\"10.1109/ICHQP46026.2020.9177891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neutral-grounding resistors are employed on transmission, distribution and industrial electric power systems to achieve, among other goals, a limited magnitude of the ground-fault current. The impedance connected between a neutral point and the ground influences the total zero-sequence impedance of a system, which impacts voltages during ground faults. Therefore, there is a relation between the grounding scheme and voltage disturbances, like the short-duration rms voltage variations (SDVVs), which include interruptions, sags, and swells. Hence, this paper presents an analytical evaluation of the influence of the neutral-grounding resistance on SDVVs during single-phase-to-ground (LG) and two-phase-to-ground (LLG) faults for an industrial system. It is observed that the influence occurs mainly on phase-to-ground voltages, there being an impact on phase-to-neutral or phase-to-phase ones just for a few values of fault resistance. The results thus indicate better neutral grounding practices for industrial systems and show the best load connections, concerning SDVVs and equipment tripping.\",\"PeriodicalId\":436720,\"journal\":{\"name\":\"2020 19th International Conference on Harmonics and Quality of Power (ICHQP)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 19th International Conference on Harmonics and Quality of Power (ICHQP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHQP46026.2020.9177891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 19th International Conference on Harmonics and Quality of Power (ICHQP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHQP46026.2020.9177891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

中性接地电阻用于输电、配电和工业电力系统,以实现有限的接地故障电流。中性点与地之间的连接阻抗影响系统的总零序阻抗,从而影响接地故障时的电压。因此,接地方案与电压扰动之间存在关系,如短时均方根电压变化(sdvv),包括中断、下垂和膨胀。因此,本文对工业系统单相对地(LG)和两相对地(LLG)故障时中性接地电阻对sdvv的影响进行了分析评估。观察到,影响主要发生在相对地电压上,只有少数故障电阻值才会对相对中性点或相对电压产生影响。因此,结果表明工业系统的中性点接地实践更好,并显示了最佳负载连接,涉及sdvv和设备跳闸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact Evaluation of the Neutral-Grounding Resistance on Short-Duration RMS Voltage Variations
Neutral-grounding resistors are employed on transmission, distribution and industrial electric power systems to achieve, among other goals, a limited magnitude of the ground-fault current. The impedance connected between a neutral point and the ground influences the total zero-sequence impedance of a system, which impacts voltages during ground faults. Therefore, there is a relation between the grounding scheme and voltage disturbances, like the short-duration rms voltage variations (SDVVs), which include interruptions, sags, and swells. Hence, this paper presents an analytical evaluation of the influence of the neutral-grounding resistance on SDVVs during single-phase-to-ground (LG) and two-phase-to-ground (LLG) faults for an industrial system. It is observed that the influence occurs mainly on phase-to-ground voltages, there being an impact on phase-to-neutral or phase-to-phase ones just for a few values of fault resistance. The results thus indicate better neutral grounding practices for industrial systems and show the best load connections, concerning SDVVs and equipment tripping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信