利用顾客产品评论中的主题建模对婴儿产品进行分类

Lay Acheadeth, N. N. Qomariyah, Misa M. Xirinda
{"title":"利用顾客产品评论中的主题建模对婴儿产品进行分类","authors":"Lay Acheadeth, N. N. Qomariyah, Misa M. Xirinda","doi":"10.1109/CyberneticsCom55287.2022.9865282","DOIUrl":null,"url":null,"abstract":"E-commerce is growing at a breakneck pace. As a result, online shopping has increased, which has increased online product reviews. Often, we come across Amazon products with thousands of reviews, and if we look closely we discover that some of them are completely unrelated to the product. In this study, we conducted research on how product review classification can assist in resolving the issue of comments on incorrect items. The method used in this research consists of 4 steps which are, data acquisition, data pre-processing, topic modeling, and text classification. Where Latent Dirichlet Allocation (LDA) was used as our topic modeling technique, and for text classification we used Support Vector Machine (SVM), Logistic Regression, and Multi-Layer Perceptron (MLP) classifiers. We found out that by combining both topic modeling and text classification, a powerful tool for handling this kind of problem was developed. Adding the topic modeling can improve the model's accuracy performance from 0.61 to 0.78. So, we can conclude that the topic modeling was useful in classifying the product reviews.","PeriodicalId":178279,"journal":{"name":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing Topic Modelling in Customer Product Review for Classifying Baby Product\",\"authors\":\"Lay Acheadeth, N. N. Qomariyah, Misa M. Xirinda\",\"doi\":\"10.1109/CyberneticsCom55287.2022.9865282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"E-commerce is growing at a breakneck pace. As a result, online shopping has increased, which has increased online product reviews. Often, we come across Amazon products with thousands of reviews, and if we look closely we discover that some of them are completely unrelated to the product. In this study, we conducted research on how product review classification can assist in resolving the issue of comments on incorrect items. The method used in this research consists of 4 steps which are, data acquisition, data pre-processing, topic modeling, and text classification. Where Latent Dirichlet Allocation (LDA) was used as our topic modeling technique, and for text classification we used Support Vector Machine (SVM), Logistic Regression, and Multi-Layer Perceptron (MLP) classifiers. We found out that by combining both topic modeling and text classification, a powerful tool for handling this kind of problem was developed. Adding the topic modeling can improve the model's accuracy performance from 0.61 to 0.78. So, we can conclude that the topic modeling was useful in classifying the product reviews.\",\"PeriodicalId\":178279,\"journal\":{\"name\":\"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CyberneticsCom55287.2022.9865282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberneticsCom55287.2022.9865282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子商务正以惊人的速度发展。因此,网上购物增加了,这也增加了网上产品的评论。我们经常会遇到有成千上万条评论的亚马逊产品,如果我们仔细观察,我们会发现其中一些评论与产品完全无关。在本研究中,我们研究了产品评论分类如何帮助解决对不正确项目的评论问题。本研究采用的方法包括数据采集、数据预处理、主题建模和文本分类4个步骤。其中使用潜在狄利克雷分配(LDA)作为我们的主题建模技术,对于文本分类,我们使用支持向量机(SVM),逻辑回归和多层感知器(MLP)分类器。我们发现,将主题建模和文本分类相结合,可以开发出一种处理这类问题的强大工具。添加主题建模可以将模型的精度性能从0.61提高到0.78。因此,我们可以得出结论,主题建模在产品评论分类中是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizing Topic Modelling in Customer Product Review for Classifying Baby Product
E-commerce is growing at a breakneck pace. As a result, online shopping has increased, which has increased online product reviews. Often, we come across Amazon products with thousands of reviews, and if we look closely we discover that some of them are completely unrelated to the product. In this study, we conducted research on how product review classification can assist in resolving the issue of comments on incorrect items. The method used in this research consists of 4 steps which are, data acquisition, data pre-processing, topic modeling, and text classification. Where Latent Dirichlet Allocation (LDA) was used as our topic modeling technique, and for text classification we used Support Vector Machine (SVM), Logistic Regression, and Multi-Layer Perceptron (MLP) classifiers. We found out that by combining both topic modeling and text classification, a powerful tool for handling this kind of problem was developed. Adding the topic modeling can improve the model's accuracy performance from 0.61 to 0.78. So, we can conclude that the topic modeling was useful in classifying the product reviews.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信