血管内超声图像中腔腔边界的自动识别

JunOh Park, ByoungChul Ko, Hee-Jun Park, J. Nam
{"title":"血管内超声图像中腔腔边界的自动识别","authors":"JunOh Park, ByoungChul Ko, Hee-Jun Park, J. Nam","doi":"10.3745/KIPSTB.2012.19B.3.201","DOIUrl":null,"url":null,"abstract":"Accurately segmenting lumen border in intravascular ultrasound images (IVUS) is very important to study vascular wall architecture for diagnosis of the cardiovascular diseases. After each of IVUS image is transformed to a polar coordinated image, initial points are detected using wavelet transform. Then, lumen border is initialized as the set of important points using non parametric probability density function and smoothing function by removing outlier initial points occurred by noises and artifacts. Finally, polynomial curve fitting is applied to obtain real lumen border using filtered important points. The evaluation of proposed method was performed with related method and the proposed method produced accurate lumen contour detection when compared to another method in most types of IVUS images.","PeriodicalId":122700,"journal":{"name":"The Kips Transactions:partb","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Identification of the Lumen Border in Intravascular Ultrasound Images\",\"authors\":\"JunOh Park, ByoungChul Ko, Hee-Jun Park, J. Nam\",\"doi\":\"10.3745/KIPSTB.2012.19B.3.201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately segmenting lumen border in intravascular ultrasound images (IVUS) is very important to study vascular wall architecture for diagnosis of the cardiovascular diseases. After each of IVUS image is transformed to a polar coordinated image, initial points are detected using wavelet transform. Then, lumen border is initialized as the set of important points using non parametric probability density function and smoothing function by removing outlier initial points occurred by noises and artifacts. Finally, polynomial curve fitting is applied to obtain real lumen border using filtered important points. The evaluation of proposed method was performed with related method and the proposed method produced accurate lumen contour detection when compared to another method in most types of IVUS images.\",\"PeriodicalId\":122700,\"journal\":{\"name\":\"The Kips Transactions:partb\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Kips Transactions:partb\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3745/KIPSTB.2012.19B.3.201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partb","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTB.2012.19B.3.201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在血管内超声图像(IVUS)中准确分割管腔边界对研究血管壁结构对心血管疾病的诊断具有重要意义。将每幅IVUS图像变换为极坐标图像后,利用小波变换检测初始点。然后,利用非参数概率密度函数和平滑函数,通过去除噪声和伪影产生的离群初始点,将流腔边界初始化为重要点的集合;最后,利用滤波后的重要点进行多项式曲线拟合,得到真实的流腔边界。与相关方法进行了评价,与其他方法相比,该方法在大多数类型的IVUS图像中产生了准确的管腔轮廓检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Identification of the Lumen Border in Intravascular Ultrasound Images
Accurately segmenting lumen border in intravascular ultrasound images (IVUS) is very important to study vascular wall architecture for diagnosis of the cardiovascular diseases. After each of IVUS image is transformed to a polar coordinated image, initial points are detected using wavelet transform. Then, lumen border is initialized as the set of important points using non parametric probability density function and smoothing function by removing outlier initial points occurred by noises and artifacts. Finally, polynomial curve fitting is applied to obtain real lumen border using filtered important points. The evaluation of proposed method was performed with related method and the proposed method produced accurate lumen contour detection when compared to another method in most types of IVUS images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信