基因:基于内容的推荐系统的遗传算法分类器,不需要持续的用户反馈

J. Pagonis, A. Clark
{"title":"基因:基于内容的推荐系统的遗传算法分类器,不需要持续的用户反馈","authors":"J. Pagonis, A. Clark","doi":"10.1109/UKCI.2010.5625594","DOIUrl":null,"url":null,"abstract":"We present Engene, a genetic algorithm based classifier which is designed for use in content-based recommender systems. Once bootstrapped Engene does not need any human feedback. Although it is primarily used as an on-line classifier, in this paper we present its use as a one-class document batch classifier and compare its performance against that of a one-class k-NN classifier.","PeriodicalId":403291,"journal":{"name":"2010 UK Workshop on Computational Intelligence (UKCI)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Engene: A genetic algorithm classifier for content-based recommender systems that does not require continuous user feedback\",\"authors\":\"J. Pagonis, A. Clark\",\"doi\":\"10.1109/UKCI.2010.5625594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Engene, a genetic algorithm based classifier which is designed for use in content-based recommender systems. Once bootstrapped Engene does not need any human feedback. Although it is primarily used as an on-line classifier, in this paper we present its use as a one-class document batch classifier and compare its performance against that of a one-class k-NN classifier.\",\"PeriodicalId\":403291,\"journal\":{\"name\":\"2010 UK Workshop on Computational Intelligence (UKCI)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 UK Workshop on Computational Intelligence (UKCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKCI.2010.5625594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2010.5625594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们提出了Engene,一个基于遗传算法的分类器,设计用于基于内容的推荐系统。一旦启动,基因就不需要任何人类的反馈。虽然它主要用作在线分类器,但在本文中,我们将其用作单类文档批分类器,并将其性能与单类k-NN分类器进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engene: A genetic algorithm classifier for content-based recommender systems that does not require continuous user feedback
We present Engene, a genetic algorithm based classifier which is designed for use in content-based recommender systems. Once bootstrapped Engene does not need any human feedback. Although it is primarily used as an on-line classifier, in this paper we present its use as a one-class document batch classifier and compare its performance against that of a one-class k-NN classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信