Perbandingan方法Bootstrap, Jacknife江丹区域特定Jacknife Pada Pendugaan均方误差模型β -伯努利

Yesi Santika, Widiarti Widiarti, Fitriani Fitriani, M. Usman
{"title":"Perbandingan方法Bootstrap, Jacknife江丹区域特定Jacknife Pada Pendugaan均方误差模型β -伯努利","authors":"Yesi Santika, Widiarti Widiarti, Fitriani Fitriani, M. Usman","doi":"10.23960/JSM.V2I1.2756","DOIUrl":null,"url":null,"abstract":"Small area estimation is defined as a statistical technique for estimating the parameters of a subpopulation with a small sample size. One method of estimating small area parameters is the Empirical Bayes (EB) method. The accuracy of the Empirical Bayes (EB) estimator can be measured by evaluating the Mean Squared Error (MSE). In this study, 3 methods to determine MSE in the EB estimator of the Beta-Bernoulli model will be compared, namely the Bootstrap, Jackknife Jiang and Area-specific Jackknife methods. The study is carried out theoretically and empirically through simulation with R-studio software version 1.2.5033. The simulation results in a number of areas and pairs of prior distribution parameter values, namely Beta, show the effect of sample size and parameter value pairs on the Mean Square Error (MSE) value. The larger the number of areas and the smaller the initial 𝛽, the smaller the MSE value. The area-specific Jackknife method produces the smallest MSE in the number of areas 100 and the Beta parameter value 0.1.","PeriodicalId":286978,"journal":{"name":"Jurnal Siger Matematika","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perbandingan Metode Bootstrap, Jacknife Jiang Dan Area Specific Jacknife Pada Pendugaan Mean Square Error Model Beta-Bernoulli\",\"authors\":\"Yesi Santika, Widiarti Widiarti, Fitriani Fitriani, M. Usman\",\"doi\":\"10.23960/JSM.V2I1.2756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Small area estimation is defined as a statistical technique for estimating the parameters of a subpopulation with a small sample size. One method of estimating small area parameters is the Empirical Bayes (EB) method. The accuracy of the Empirical Bayes (EB) estimator can be measured by evaluating the Mean Squared Error (MSE). In this study, 3 methods to determine MSE in the EB estimator of the Beta-Bernoulli model will be compared, namely the Bootstrap, Jackknife Jiang and Area-specific Jackknife methods. The study is carried out theoretically and empirically through simulation with R-studio software version 1.2.5033. The simulation results in a number of areas and pairs of prior distribution parameter values, namely Beta, show the effect of sample size and parameter value pairs on the Mean Square Error (MSE) value. The larger the number of areas and the smaller the initial 𝛽, the smaller the MSE value. The area-specific Jackknife method produces the smallest MSE in the number of areas 100 and the Beta parameter value 0.1.\",\"PeriodicalId\":286978,\"journal\":{\"name\":\"Jurnal Siger Matematika\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Siger Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23960/JSM.V2I1.2756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Siger Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23960/JSM.V2I1.2756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

小面积估计是一种估计小样本量亚种群参数的统计方法。一种估计小面积参数的方法是经验贝叶斯(EB)方法。经验贝叶斯(Empirical Bayes, EB)估计的精度可以通过均方误差(Mean Squared Error, MSE)来衡量。本文将比较3种确定β - bernoulli模型EB估计量MSE的方法,即Bootstrap、Jackknife Jiang和Area-specific Jackknife方法。采用R-studio软件版本1.2.5033进行仿真,从理论和实证两方面进行了研究。在多个区域和对先验分布参数值Beta的模拟结果中,显示了样本量和参数值对对均方误差(MSE)值的影响。区域数越大,初始值越小,MSE值越小。区域特定的Jackknife方法在区域数100和Beta参数值0.1中产生最小的MSE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perbandingan Metode Bootstrap, Jacknife Jiang Dan Area Specific Jacknife Pada Pendugaan Mean Square Error Model Beta-Bernoulli
Small area estimation is defined as a statistical technique for estimating the parameters of a subpopulation with a small sample size. One method of estimating small area parameters is the Empirical Bayes (EB) method. The accuracy of the Empirical Bayes (EB) estimator can be measured by evaluating the Mean Squared Error (MSE). In this study, 3 methods to determine MSE in the EB estimator of the Beta-Bernoulli model will be compared, namely the Bootstrap, Jackknife Jiang and Area-specific Jackknife methods. The study is carried out theoretically and empirically through simulation with R-studio software version 1.2.5033. The simulation results in a number of areas and pairs of prior distribution parameter values, namely Beta, show the effect of sample size and parameter value pairs on the Mean Square Error (MSE) value. The larger the number of areas and the smaller the initial 𝛽, the smaller the MSE value. The area-specific Jackknife method produces the smallest MSE in the number of areas 100 and the Beta parameter value 0.1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信