J. Kazempoor, A. Habibirad, Adel Ahmadi Nadi, Gholam Reza Mohtashami Borzadaran
{"title":"自适应渐进式ii型滤波方案下威布尔分布的统计推断及其在风速数据分析中的应用","authors":"J. Kazempoor, A. Habibirad, Adel Ahmadi Nadi, Gholam Reza Mohtashami Borzadaran","doi":"10.19139/soic-2310-5070-1501","DOIUrl":null,"url":null,"abstract":"This paper provides four well-known statistical inferences for the principal parameters regarding the two-parameter Weibull distribution including its hazard, quantile, and survival function based on an adaptive progressive type-II censoring plan. The statistical inferences involve the likelihood and approximate likelihood methods, the Bayesian approach, the bootstrap procedure, and a new conditional technique. To construct Bayesian point estimators and credible intervals, Markov chain Monte Carlo, Metropolis-Hastings, and Gibbs sampling algorithms were used. The Bayesian estimators are developed under conjugate and non-conjugate priors and in the presence of symmetric and asymmetric loss functions. In addition, a conditional estimation technique with interesting distributional characteristics has been introduced. The aforementioned methods are compared extensively through a series of simulations. The results of comparative study showed the superiority of the conditional approach over the other ones. Finally, the developed methods are applied to analyze well-known wind speed data.","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical inferences for the Weibull distribution under adaptive progressive type-II censoring plan and their application in wind speed data analysis\",\"authors\":\"J. Kazempoor, A. Habibirad, Adel Ahmadi Nadi, Gholam Reza Mohtashami Borzadaran\",\"doi\":\"10.19139/soic-2310-5070-1501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides four well-known statistical inferences for the principal parameters regarding the two-parameter Weibull distribution including its hazard, quantile, and survival function based on an adaptive progressive type-II censoring plan. The statistical inferences involve the likelihood and approximate likelihood methods, the Bayesian approach, the bootstrap procedure, and a new conditional technique. To construct Bayesian point estimators and credible intervals, Markov chain Monte Carlo, Metropolis-Hastings, and Gibbs sampling algorithms were used. The Bayesian estimators are developed under conjugate and non-conjugate priors and in the presence of symmetric and asymmetric loss functions. In addition, a conditional estimation technique with interesting distributional characteristics has been introduced. The aforementioned methods are compared extensively through a series of simulations. The results of comparative study showed the superiority of the conditional approach over the other ones. Finally, the developed methods are applied to analyze well-known wind speed data.\",\"PeriodicalId\":131002,\"journal\":{\"name\":\"Statistics, Optimization & Information Computing\",\"volume\":\"161 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, Optimization & Information Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/soic-2310-5070-1501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Statistical inferences for the Weibull distribution under adaptive progressive type-II censoring plan and their application in wind speed data analysis
This paper provides four well-known statistical inferences for the principal parameters regarding the two-parameter Weibull distribution including its hazard, quantile, and survival function based on an adaptive progressive type-II censoring plan. The statistical inferences involve the likelihood and approximate likelihood methods, the Bayesian approach, the bootstrap procedure, and a new conditional technique. To construct Bayesian point estimators and credible intervals, Markov chain Monte Carlo, Metropolis-Hastings, and Gibbs sampling algorithms were used. The Bayesian estimators are developed under conjugate and non-conjugate priors and in the presence of symmetric and asymmetric loss functions. In addition, a conditional estimation technique with interesting distributional characteristics has been introduced. The aforementioned methods are compared extensively through a series of simulations. The results of comparative study showed the superiority of the conditional approach over the other ones. Finally, the developed methods are applied to analyze well-known wind speed data.