遗传算法与蚁群算法求解旅行商问题的比较分析

Kangshun Li, Lanlan Kang, Wensheng Zhang, Bing Li
{"title":"遗传算法与蚁群算法求解旅行商问题的比较分析","authors":"Kangshun Li, Lanlan Kang, Wensheng Zhang, Bing Li","doi":"10.1109/WSCS.2008.11","DOIUrl":null,"url":null,"abstract":"Ant Colony Algorithm and Genetic Algorithm (GA), two bionic-inspired optimization algorithms, have great potentials to solve the combination optimization problems, respectively used in solving traveling salesman problem, but there are some shortcomings if only one of them is used to solve TSP. Performance comparative analysis have been done by using ACA and GA respectively in solving TSP in this paper. The experiments show the advantages and disadvantages used only ACA or GA, we can overcome the shortcomings if GA and ACA are combined to solve TSP and get faster convergent speed and more accurate results compared with only using ACA or GA.","PeriodicalId":378383,"journal":{"name":"IEEE International Workshop on Semantic Computing and Systems","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Comparative Analysis of Genetic Algorithm and Ant Colony Algorithm on Solving Traveling Salesman Problem\",\"authors\":\"Kangshun Li, Lanlan Kang, Wensheng Zhang, Bing Li\",\"doi\":\"10.1109/WSCS.2008.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ant Colony Algorithm and Genetic Algorithm (GA), two bionic-inspired optimization algorithms, have great potentials to solve the combination optimization problems, respectively used in solving traveling salesman problem, but there are some shortcomings if only one of them is used to solve TSP. Performance comparative analysis have been done by using ACA and GA respectively in solving TSP in this paper. The experiments show the advantages and disadvantages used only ACA or GA, we can overcome the shortcomings if GA and ACA are combined to solve TSP and get faster convergent speed and more accurate results compared with only using ACA or GA.\",\"PeriodicalId\":378383,\"journal\":{\"name\":\"IEEE International Workshop on Semantic Computing and Systems\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Workshop on Semantic Computing and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSCS.2008.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Workshop on Semantic Computing and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSCS.2008.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

蚁群算法(Ant Colony Algorithm)和遗传算法(Genetic Algorithm, GA)是两种仿生优化算法,在解决组合优化问题方面具有很大的潜力,分别用于解决旅行商问题,但仅用其中一种算法来解决TSP问题存在一定的不足。本文分别用蚁群算法和遗传算法对求解TSP问题进行了性能对比分析。实验显示了单独使用遗传算法和遗传算法的优点和缺点,将遗传算法和遗传算法结合起来求解TSP可以克服这些缺点,得到比单独使用遗传算法和遗传算法更快的收敛速度和更准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Analysis of Genetic Algorithm and Ant Colony Algorithm on Solving Traveling Salesman Problem
Ant Colony Algorithm and Genetic Algorithm (GA), two bionic-inspired optimization algorithms, have great potentials to solve the combination optimization problems, respectively used in solving traveling salesman problem, but there are some shortcomings if only one of them is used to solve TSP. Performance comparative analysis have been done by using ACA and GA respectively in solving TSP in this paper. The experiments show the advantages and disadvantages used only ACA or GA, we can overcome the shortcomings if GA and ACA are combined to solve TSP and get faster convergent speed and more accurate results compared with only using ACA or GA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信