正弦信号在拉普拉斯噪声中的频率估计

Ta‐Hsin Li, K. Song
{"title":"正弦信号在拉普拉斯噪声中的频率估计","authors":"Ta‐Hsin Li, K. Song","doi":"10.1109/ISIT.2007.4557480","DOIUrl":null,"url":null,"abstract":"Accurate estimation of the frequency of sinusoidal signals from noisy observations is an important problem in signal processing applications such as radar, sonar, and telecommunications. In this paper, we study the problem under the assumption of non-Gaussian noise in general and Laplace noise in particular. We prove that the Laplace maximum likelihood estimator is able to attain the asymptotic Cramer-Rao lower bound under the Laplace assumption which is one half of the Cramer-Rao lower bound in the Gaussian case. This provides the possibility of improving the currently most efficient methods such as nonlinear least-squares and periodogram maximization in non-Gaussian cases. We propose a computational procedure that overcomes the difficulty of local extrema in the likelihood function when computing the maximum likelihood estimator. We also provide some simulation results to validate the proposed approach.","PeriodicalId":193467,"journal":{"name":"2007 IEEE International Symposium on Information Theory","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Estimation of the Frequency of Sinusoidal Signals in Laplace Noise\",\"authors\":\"Ta‐Hsin Li, K. Song\",\"doi\":\"10.1109/ISIT.2007.4557480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate estimation of the frequency of sinusoidal signals from noisy observations is an important problem in signal processing applications such as radar, sonar, and telecommunications. In this paper, we study the problem under the assumption of non-Gaussian noise in general and Laplace noise in particular. We prove that the Laplace maximum likelihood estimator is able to attain the asymptotic Cramer-Rao lower bound under the Laplace assumption which is one half of the Cramer-Rao lower bound in the Gaussian case. This provides the possibility of improving the currently most efficient methods such as nonlinear least-squares and periodogram maximization in non-Gaussian cases. We propose a computational procedure that overcomes the difficulty of local extrema in the likelihood function when computing the maximum likelihood estimator. We also provide some simulation results to validate the proposed approach.\",\"PeriodicalId\":193467,\"journal\":{\"name\":\"2007 IEEE International Symposium on Information Theory\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2007.4557480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2007.4557480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

从噪声观测中准确估计正弦信号的频率是雷达、声纳和电信等信号处理应用中的一个重要问题。在本文中,我们一般在非高斯噪声,特别是拉普拉斯噪声的假设下研究这个问题。我们证明了拉普拉斯极大似然估计在拉普拉斯假设下能够得到渐近的Cramer-Rao下界,它是高斯情况下Cramer-Rao下界的一半。这为改进当前最有效的方法提供了可能性,例如非高斯情况下的非线性最小二乘和周期图最大化。我们提出了一种计算方法,克服了计算极大似然估计时似然函数的局部极值的困难。我们还提供了一些仿真结果来验证所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of the Frequency of Sinusoidal Signals in Laplace Noise
Accurate estimation of the frequency of sinusoidal signals from noisy observations is an important problem in signal processing applications such as radar, sonar, and telecommunications. In this paper, we study the problem under the assumption of non-Gaussian noise in general and Laplace noise in particular. We prove that the Laplace maximum likelihood estimator is able to attain the asymptotic Cramer-Rao lower bound under the Laplace assumption which is one half of the Cramer-Rao lower bound in the Gaussian case. This provides the possibility of improving the currently most efficient methods such as nonlinear least-squares and periodogram maximization in non-Gaussian cases. We propose a computational procedure that overcomes the difficulty of local extrema in the likelihood function when computing the maximum likelihood estimator. We also provide some simulation results to validate the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信