建模与分析:物联网中的能量收集

Yu-Hsuan Chen, Bryan K. F. Ng, Winston K.G. Seah, Ai-Chun Pang
{"title":"建模与分析:物联网中的能量收集","authors":"Yu-Hsuan Chen, Bryan K. F. Ng, Winston K.G. Seah, Ai-Chun Pang","doi":"10.1145/2988287.2989144","DOIUrl":null,"url":null,"abstract":"In the Internet of Things(IoT), the size constraint of those small and embedded devices limits the network lifetime because limited energy can be stored on these devices. In recent years, energy harvesting technology has attracted increasing attention, due to its ability to extend the network lifetime significantly. However, the performance of IoT devices powered by energy harvesting sources has not been fully analyzed and understood. In this paper, we model the energy harvesting process in IoT devices using slotted Carrier Sense Multiple Access with Collision Avoidance (CSMA /CA) mechanism of IEEE 802.15.4 standard, and analyze the performance in terms of delay and throughput. Our new model successfully integrates the energy harvesting process and binary backoff process through a unified Markov chain model. Finally, the new model is validated by simulation and the throughput errors between simulation and analytical model are no more than 6%. We demonstrate the application of the model with different energy harvesting rate corresponding to different sources such as solar and vibration energy harvesters.","PeriodicalId":158785,"journal":{"name":"Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Modeling and Analysis: Energy Harvesting in the Internet of Things\",\"authors\":\"Yu-Hsuan Chen, Bryan K. F. Ng, Winston K.G. Seah, Ai-Chun Pang\",\"doi\":\"10.1145/2988287.2989144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Internet of Things(IoT), the size constraint of those small and embedded devices limits the network lifetime because limited energy can be stored on these devices. In recent years, energy harvesting technology has attracted increasing attention, due to its ability to extend the network lifetime significantly. However, the performance of IoT devices powered by energy harvesting sources has not been fully analyzed and understood. In this paper, we model the energy harvesting process in IoT devices using slotted Carrier Sense Multiple Access with Collision Avoidance (CSMA /CA) mechanism of IEEE 802.15.4 standard, and analyze the performance in terms of delay and throughput. Our new model successfully integrates the energy harvesting process and binary backoff process through a unified Markov chain model. Finally, the new model is validated by simulation and the throughput errors between simulation and analytical model are no more than 6%. We demonstrate the application of the model with different energy harvesting rate corresponding to different sources such as solar and vibration energy harvesters.\",\"PeriodicalId\":158785,\"journal\":{\"name\":\"Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2988287.2989144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2988287.2989144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在物联网(IoT)中,这些小型嵌入式设备的尺寸限制限制了网络的寿命,因为这些设备可以存储的能量有限。近年来,能量收集技术因其能够显著延长网络寿命而受到越来越多的关注。然而,由能量收集源供电的物联网设备的性能尚未得到充分的分析和理解。本文采用IEEE 802.15.4标准的开槽载波感知多址防碰撞(CSMA /CA)机制对物联网设备中的能量收集过程进行建模,并从延迟和吞吐量方面分析其性能。我们的新模型通过统一的马尔可夫链模型成功地将能量收集过程和二元回退过程集成在一起。最后,通过仿真验证了新模型的有效性,仿真结果与解析模型的吞吐量误差不超过6%。针对不同的能源,如太阳能和振动能量采集器,我们演示了不同能量收集率的模型的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and Analysis: Energy Harvesting in the Internet of Things
In the Internet of Things(IoT), the size constraint of those small and embedded devices limits the network lifetime because limited energy can be stored on these devices. In recent years, energy harvesting technology has attracted increasing attention, due to its ability to extend the network lifetime significantly. However, the performance of IoT devices powered by energy harvesting sources has not been fully analyzed and understood. In this paper, we model the energy harvesting process in IoT devices using slotted Carrier Sense Multiple Access with Collision Avoidance (CSMA /CA) mechanism of IEEE 802.15.4 standard, and analyze the performance in terms of delay and throughput. Our new model successfully integrates the energy harvesting process and binary backoff process through a unified Markov chain model. Finally, the new model is validated by simulation and the throughput errors between simulation and analytical model are no more than 6%. We demonstrate the application of the model with different energy harvesting rate corresponding to different sources such as solar and vibration energy harvesters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信