x线CT迭代重建的四种最小化方法研究

B. De Man, S. Basu, Jean-Baptiste Thibault, J. Hsieh, J. Fessier, C. Bouman, K. Sauer
{"title":"x线CT迭代重建的四种最小化方法研究","authors":"B. De Man, S. Basu, Jean-Baptiste Thibault, J. Hsieh, J. Fessier, C. Bouman, K. Sauer","doi":"10.1109/NSSMIC.2005.1596895","DOIUrl":null,"url":null,"abstract":"This paper compares four different minimization approaches for iterative reconstruction in CT:(1) iterative coordinate descent approach (ICD), (2) conjugate gradient approach (CG), (3) separable parabolic surrogate approach with ordered subsets (OS), and (4) convergent ordered subsets approach (COS). In addition to showing that all approaches result in the same final image, the paper gives an indication of the number of iterations and time to convergence for the studied approaches","PeriodicalId":105619,"journal":{"name":"IEEE Nuclear Science Symposium Conference Record, 2005","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"A study of four minimization approaches for iterative reconstruction in X-ray CT\",\"authors\":\"B. De Man, S. Basu, Jean-Baptiste Thibault, J. Hsieh, J. Fessier, C. Bouman, K. Sauer\",\"doi\":\"10.1109/NSSMIC.2005.1596895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper compares four different minimization approaches for iterative reconstruction in CT:(1) iterative coordinate descent approach (ICD), (2) conjugate gradient approach (CG), (3) separable parabolic surrogate approach with ordered subsets (OS), and (4) convergent ordered subsets approach (COS). In addition to showing that all approaches result in the same final image, the paper gives an indication of the number of iterations and time to convergence for the studied approaches\",\"PeriodicalId\":105619,\"journal\":{\"name\":\"IEEE Nuclear Science Symposium Conference Record, 2005\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Nuclear Science Symposium Conference Record, 2005\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2005.1596895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposium Conference Record, 2005","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2005.1596895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

本文比较了四种不同的CT迭代重构最小化方法:(1)迭代坐标下降法(ICD),(2)共轭梯度法(CG),(3)有序子集可分抛物替代法(OS),(4)收敛有序子集法(COS)。除了证明所有方法都能得到相同的最终图像外,本文还指出了所研究方法的迭代次数和收敛时间
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study of four minimization approaches for iterative reconstruction in X-ray CT
This paper compares four different minimization approaches for iterative reconstruction in CT:(1) iterative coordinate descent approach (ICD), (2) conjugate gradient approach (CG), (3) separable parabolic surrogate approach with ordered subsets (OS), and (4) convergent ordered subsets approach (COS). In addition to showing that all approaches result in the same final image, the paper gives an indication of the number of iterations and time to convergence for the studied approaches
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信