{"title":"异构节点加权图的最佳生成树","authors":"Nan Wang, Wei Liu","doi":"10.11648/J.SJAMS.20170501.12","DOIUrl":null,"url":null,"abstract":"Minimum spanning tree theory has a wide application in many fields. But in many practical problems, we are often faced with the heterogeneous node weighted graph with both edge weight and node weight be considered. In this paper, we present the definition and the mathematical model of the best spanning tree, then raise an algorithm of the best spanning tree, finally, prove that the algorithm is effective in the best spanning tree problem through an application example.","PeriodicalId":422938,"journal":{"name":"Science Journal of Applied Mathematics and Statistics","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Best Spanning Tree of Heterogeneous Node Weighted Graphs\",\"authors\":\"Nan Wang, Wei Liu\",\"doi\":\"10.11648/J.SJAMS.20170501.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Minimum spanning tree theory has a wide application in many fields. But in many practical problems, we are often faced with the heterogeneous node weighted graph with both edge weight and node weight be considered. In this paper, we present the definition and the mathematical model of the best spanning tree, then raise an algorithm of the best spanning tree, finally, prove that the algorithm is effective in the best spanning tree problem through an application example.\",\"PeriodicalId\":422938,\"journal\":{\"name\":\"Science Journal of Applied Mathematics and Statistics\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Journal of Applied Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.SJAMS.20170501.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Journal of Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.SJAMS.20170501.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Best Spanning Tree of Heterogeneous Node Weighted Graphs
Minimum spanning tree theory has a wide application in many fields. But in many practical problems, we are often faced with the heterogeneous node weighted graph with both edge weight and node weight be considered. In this paper, we present the definition and the mathematical model of the best spanning tree, then raise an algorithm of the best spanning tree, finally, prove that the algorithm is effective in the best spanning tree problem through an application example.