基于遗传算法优化技术交易规则的投资组合选择

J. F. Kotowski, E. Szlachcic, P. M. Wańtowski
{"title":"基于遗传算法优化技术交易规则的投资组合选择","authors":"J. F. Kotowski, E. Szlachcic, P. M. Wańtowski","doi":"10.1109/INES.2010.5483839","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a portfolio selection method based on a set of technical trading rules, which are optimized by a genetic algorithm. The aim of the research was to check if it is possible to obtain a set of trading rules deriving from technical indicators, which could be used to create a portfolio able to outperform standard portfolio models based upon Modern Portfolio Theory. On the contrary to the typical portfolio approach incorporating expected return and variance, presented method relies on market momentum analysis and stock timing using selected technical indicators.","PeriodicalId":118326,"journal":{"name":"2010 IEEE 14th International Conference on Intelligent Engineering Systems","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Portfolio selection based on technical trading rules optimized with a genetic algorithm\",\"authors\":\"J. F. Kotowski, E. Szlachcic, P. M. Wańtowski\",\"doi\":\"10.1109/INES.2010.5483839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a portfolio selection method based on a set of technical trading rules, which are optimized by a genetic algorithm. The aim of the research was to check if it is possible to obtain a set of trading rules deriving from technical indicators, which could be used to create a portfolio able to outperform standard portfolio models based upon Modern Portfolio Theory. On the contrary to the typical portfolio approach incorporating expected return and variance, presented method relies on market momentum analysis and stock timing using selected technical indicators.\",\"PeriodicalId\":118326,\"journal\":{\"name\":\"2010 IEEE 14th International Conference on Intelligent Engineering Systems\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 14th International Conference on Intelligent Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INES.2010.5483839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 14th International Conference on Intelligent Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INES.2010.5483839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于技术交易规则集的投资组合选择方法,并利用遗传算法对技术交易规则集进行优化。研究的目的是检验是否有可能从技术指标中获得一套交易规则,这些规则可以用来创建一个能够超越基于现代投资组合理论的标准投资组合模型的投资组合。与典型的结合预期收益和方差的投资组合方法相反,该方法依赖于市场动量分析和使用选定技术指标的股票时机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Portfolio selection based on technical trading rules optimized with a genetic algorithm
In this paper, we propose a portfolio selection method based on a set of technical trading rules, which are optimized by a genetic algorithm. The aim of the research was to check if it is possible to obtain a set of trading rules deriving from technical indicators, which could be used to create a portfolio able to outperform standard portfolio models based upon Modern Portfolio Theory. On the contrary to the typical portfolio approach incorporating expected return and variance, presented method relies on market momentum analysis and stock timing using selected technical indicators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信