一致性查询应答的操作方法

M. Calautti, L. Libkin, Andreas Pieris
{"title":"一致性查询应答的操作方法","authors":"M. Calautti, L. Libkin, Andreas Pieris","doi":"10.1145/3196959.3196966","DOIUrl":null,"url":null,"abstract":"Consistent query answering (CQA) aims to find meaningful answers to queries when databases are inconsistent, i.e., do not conform to their specifications. Such answers must be certainly true in all repairs, which are consistent databases whose difference from the inconsistent one is minimal, according to some measure. This task is often computationally intractable, and much of CQA research concentrated on finding islands of tractability. Nevertheless, there are many relevant queries for which no efficient solutions exist, which is reflected by the limited practical applicability of the CQA approach. To remedy this, one needs to devise a new CQA framework that provides explicit guarantees on the quality of query answers. However, the standard notions of repair and certain answers are too coarse to permit more elaborate schemes of query answering. Our goal is to provide a new framework for CQA based on revised definitions of repairs and query answering that opens up the possibility of efficient approximate query answering with explicit guarantees. The key idea is to replace the current declarative definition of a repair with an operational one, which explains how a repair is constructed, and how likely it is that a consistent instance is a repair. This allows us to define how certain we are that a tuple should be in the answer. Using this approach, we study the complexity of both exact and approximate CQA. Even though some of the problems remain hard, for many common classes of constraints we can provide meaningful answers in reasonable time, for queries going far beyond the standard CQA approach.","PeriodicalId":344370,"journal":{"name":"Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"An Operational Approach to Consistent Query Answering\",\"authors\":\"M. Calautti, L. Libkin, Andreas Pieris\",\"doi\":\"10.1145/3196959.3196966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consistent query answering (CQA) aims to find meaningful answers to queries when databases are inconsistent, i.e., do not conform to their specifications. Such answers must be certainly true in all repairs, which are consistent databases whose difference from the inconsistent one is minimal, according to some measure. This task is often computationally intractable, and much of CQA research concentrated on finding islands of tractability. Nevertheless, there are many relevant queries for which no efficient solutions exist, which is reflected by the limited practical applicability of the CQA approach. To remedy this, one needs to devise a new CQA framework that provides explicit guarantees on the quality of query answers. However, the standard notions of repair and certain answers are too coarse to permit more elaborate schemes of query answering. Our goal is to provide a new framework for CQA based on revised definitions of repairs and query answering that opens up the possibility of efficient approximate query answering with explicit guarantees. The key idea is to replace the current declarative definition of a repair with an operational one, which explains how a repair is constructed, and how likely it is that a consistent instance is a repair. This allows us to define how certain we are that a tuple should be in the answer. Using this approach, we study the complexity of both exact and approximate CQA. Even though some of the problems remain hard, for many common classes of constraints we can provide meaningful answers in reasonable time, for queries going far beyond the standard CQA approach.\",\"PeriodicalId\":344370,\"journal\":{\"name\":\"Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3196959.3196966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3196959.3196966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

一致性查询应答(CQA)旨在为数据库不一致(即不符合其规范)时的查询找到有意义的答案。这样的答案在所有的修复中肯定是正确的,这些修复是一致的数据库,根据某种衡量标准,它们与不一致的数据库的差异是最小的。这个任务通常在计算上是难以处理的,许多CQA研究都集中在寻找可处理的孤岛上。然而,有许多相关的查询没有有效的解决方案,这反映在CQA方法的实际适用性有限。为了解决这个问题,需要设计一个新的CQA框架,为查询答案的质量提供明确的保证。然而,修复和某些答案的标准概念太粗糙,不允许更详细的查询回答方案。我们的目标是为CQA提供一个新的框架,该框架基于修订的修复和查询回答的定义,从而打开了具有显式保证的有效近似查询回答的可能性。关键思想是用操作性定义取代当前修复的声明性定义,该定义解释了如何构造修复,以及一致实例是修复的可能性有多大。这允许我们定义一个元组在答案中的确定程度。利用这种方法,我们研究了精确和近似CQA的复杂性。尽管有些问题仍然很难,但对于许多常见的约束类,我们可以在合理的时间内提供有意义的答案,对于远远超出标准CQA方法的查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Operational Approach to Consistent Query Answering
Consistent query answering (CQA) aims to find meaningful answers to queries when databases are inconsistent, i.e., do not conform to their specifications. Such answers must be certainly true in all repairs, which are consistent databases whose difference from the inconsistent one is minimal, according to some measure. This task is often computationally intractable, and much of CQA research concentrated on finding islands of tractability. Nevertheless, there are many relevant queries for which no efficient solutions exist, which is reflected by the limited practical applicability of the CQA approach. To remedy this, one needs to devise a new CQA framework that provides explicit guarantees on the quality of query answers. However, the standard notions of repair and certain answers are too coarse to permit more elaborate schemes of query answering. Our goal is to provide a new framework for CQA based on revised definitions of repairs and query answering that opens up the possibility of efficient approximate query answering with explicit guarantees. The key idea is to replace the current declarative definition of a repair with an operational one, which explains how a repair is constructed, and how likely it is that a consistent instance is a repair. This allows us to define how certain we are that a tuple should be in the answer. Using this approach, we study the complexity of both exact and approximate CQA. Even though some of the problems remain hard, for many common classes of constraints we can provide meaningful answers in reasonable time, for queries going far beyond the standard CQA approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信