体育视频分类的判别方法

N. Watcharapinchai, S. Aramvith, S. Siddhichai, S. Marukatat
{"title":"体育视频分类的判别方法","authors":"N. Watcharapinchai, S. Aramvith, S. Siddhichai, S. Marukatat","doi":"10.1109/ISCIT.2007.4392081","DOIUrl":null,"url":null,"abstract":"The problem of automating sports video classification is investigated by analyzing the low-level visual signal patterns using autocorrelogram. In this paper, two discriminant techniques are tested, namely, neural network with PCA and support vector machine (SVM), when testing data set is larger size than training data set. Seven different kinds of popularly televised sports are studied, namely basketball, Thai boxing, football, golf, diving, tennis, and volleyball. The experiments were emphasized on classifying video sequences at frame level. Classification results indicated that SVM were more efficient supervised learners than neural network with PCA for classifying sports videos with the classification accuracy of up to 91.09%.","PeriodicalId":331439,"journal":{"name":"2007 International Symposium on Communications and Information Technologies","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A discriminant approach to sports video classification\",\"authors\":\"N. Watcharapinchai, S. Aramvith, S. Siddhichai, S. Marukatat\",\"doi\":\"10.1109/ISCIT.2007.4392081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of automating sports video classification is investigated by analyzing the low-level visual signal patterns using autocorrelogram. In this paper, two discriminant techniques are tested, namely, neural network with PCA and support vector machine (SVM), when testing data set is larger size than training data set. Seven different kinds of popularly televised sports are studied, namely basketball, Thai boxing, football, golf, diving, tennis, and volleyball. The experiments were emphasized on classifying video sequences at frame level. Classification results indicated that SVM were more efficient supervised learners than neural network with PCA for classifying sports videos with the classification accuracy of up to 91.09%.\",\"PeriodicalId\":331439,\"journal\":{\"name\":\"2007 International Symposium on Communications and Information Technologies\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Symposium on Communications and Information Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCIT.2007.4392081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Communications and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCIT.2007.4392081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

利用自相关图对低层次视觉信号模式进行分析,研究了体育视频分类的自动化问题。本文在测试数据集大于训练数据集的情况下,对神经网络PCA和支持向量机SVM两种判别技术进行了测试。研究了七种不同的电视转播体育项目,即篮球、泰拳、足球、高尔夫球、跳水、网球和排球。实验重点是在帧级对视频序列进行分类。分类结果表明,SVM是比神经网络加PCA更有效的监督学习器,分类准确率高达91.09%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A discriminant approach to sports video classification
The problem of automating sports video classification is investigated by analyzing the low-level visual signal patterns using autocorrelogram. In this paper, two discriminant techniques are tested, namely, neural network with PCA and support vector machine (SVM), when testing data set is larger size than training data set. Seven different kinds of popularly televised sports are studied, namely basketball, Thai boxing, football, golf, diving, tennis, and volleyball. The experiments were emphasized on classifying video sequences at frame level. Classification results indicated that SVM were more efficient supervised learners than neural network with PCA for classifying sports videos with the classification accuracy of up to 91.09%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信