基于短语语义表示的汉语模糊限制范围检测

Huiwei Zhou, Shixian Ning, Yunlong Yang, Zhuang Liu, Junli Xu
{"title":"基于短语语义表示的汉语模糊限制范围检测","authors":"Huiwei Zhou, Shixian Ning, Yunlong Yang, Zhuang Liu, Junli Xu","doi":"10.1109/IALP.2017.8300599","DOIUrl":null,"url":null,"abstract":"Chinese hedge scope detection is dependent on syntactic and semantic information. Most previous methods typically use lexical and syntactic information as a basic unit of classification, which make these methods lose part of the effective structure information. In order to enhance detection performance, we take the phrase, which are extracted from the parse tree by some heuristic rules, as the classification unit (candidate phrase). Furthermore, a novel hierarchical neural network is proposed to learn the semantic representation of the phrase and its context. Experiments on the Chinese Biomedical Hedge Information (CBHI) corpus show that our system could achieve state-of-the-art performance without using any complicated feature engineering.","PeriodicalId":183586,"journal":{"name":"2017 International Conference on Asian Language Processing (IALP)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Chinese hedge scope detection based on phrase semantic representation\",\"authors\":\"Huiwei Zhou, Shixian Ning, Yunlong Yang, Zhuang Liu, Junli Xu\",\"doi\":\"10.1109/IALP.2017.8300599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chinese hedge scope detection is dependent on syntactic and semantic information. Most previous methods typically use lexical and syntactic information as a basic unit of classification, which make these methods lose part of the effective structure information. In order to enhance detection performance, we take the phrase, which are extracted from the parse tree by some heuristic rules, as the classification unit (candidate phrase). Furthermore, a novel hierarchical neural network is proposed to learn the semantic representation of the phrase and its context. Experiments on the Chinese Biomedical Hedge Information (CBHI) corpus show that our system could achieve state-of-the-art performance without using any complicated feature engineering.\",\"PeriodicalId\":183586,\"journal\":{\"name\":\"2017 International Conference on Asian Language Processing (IALP)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Asian Language Processing (IALP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2017.8300599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2017.8300599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

汉语模糊限制语范围检测依赖于句法和语义信息。以往的分类方法大多以词汇和句法信息作为基本的分类单位,这使得这些方法失去了部分有效的结构信息。为了提高检测性能,我们采用启发式规则从解析树中提取的短语作为分类单元(候选短语)。此外,提出了一种新的层次神经网络来学习短语及其上下文的语义表示。在中文生物医学对冲信息(CBHI)语料库上的实验表明,我们的系统可以在不使用任何复杂特征工程的情况下达到最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chinese hedge scope detection based on phrase semantic representation
Chinese hedge scope detection is dependent on syntactic and semantic information. Most previous methods typically use lexical and syntactic information as a basic unit of classification, which make these methods lose part of the effective structure information. In order to enhance detection performance, we take the phrase, which are extracted from the parse tree by some heuristic rules, as the classification unit (candidate phrase). Furthermore, a novel hierarchical neural network is proposed to learn the semantic representation of the phrase and its context. Experiments on the Chinese Biomedical Hedge Information (CBHI) corpus show that our system could achieve state-of-the-art performance without using any complicated feature engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信