高阶算术群的魅力

U. Bader, R. Boutonnet, Cyril Houdayer
{"title":"高阶算术群的魅力","authors":"U. Bader, R. Boutonnet, Cyril Houdayer","doi":"10.5802/ahl.166","DOIUrl":null,"url":null,"abstract":"We complete the study of characters on higher rank semisimple lattices initiated in [BH19,BBHP20], the missing case being the case of lattices in higher rank simple algebraic groups in arbitrary characteristics. More precisely, we investigate dynamical properties of the conjugation action of such lattices on their space of positive definite functions. Our main results deal with the existence and the classification of characters from which we derive applications to topological dynamics, ergodic theory, unitary representations and operator algebras. Our key theorem is an extension of the noncommutative Nevo-Zimmer structure theorem obtained in [BH19] to the case of simple algebraic groups defined over arbitrary local fields. We also deduce a noncommutative analogue of Margulis' factor theorem for von Neumann subalgebras of the noncommutative Poisson boundary of higher rank arithmetic groups.","PeriodicalId":192307,"journal":{"name":"Annales Henri Lebesgue","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Charmenability of higher rank arithmetic groups\",\"authors\":\"U. Bader, R. Boutonnet, Cyril Houdayer\",\"doi\":\"10.5802/ahl.166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We complete the study of characters on higher rank semisimple lattices initiated in [BH19,BBHP20], the missing case being the case of lattices in higher rank simple algebraic groups in arbitrary characteristics. More precisely, we investigate dynamical properties of the conjugation action of such lattices on their space of positive definite functions. Our main results deal with the existence and the classification of characters from which we derive applications to topological dynamics, ergodic theory, unitary representations and operator algebras. Our key theorem is an extension of the noncommutative Nevo-Zimmer structure theorem obtained in [BH19] to the case of simple algebraic groups defined over arbitrary local fields. We also deduce a noncommutative analogue of Margulis' factor theorem for von Neumann subalgebras of the noncommutative Poisson boundary of higher rank arithmetic groups.\",\"PeriodicalId\":192307,\"journal\":{\"name\":\"Annales Henri Lebesgue\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Lebesgue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/ahl.166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Lebesgue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ahl.166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们完成了在[BH19,BBHP20]中提出的高阶半简单格上的特征的研究,缺失的情况是任意特征的高阶简单代数群上的格的情况。更确切地说,我们研究了这些格在它们的正定函数空间上的共轭作用的动力学性质。我们的主要结果处理的存在和分类的字符,从我们推导应用到拓扑动力学,遍历理论,酉表示和算子代数。我们的关键定理是将[BH19]中得到的非交换的neo - zimmer结构定理推广到定义在任意局部域上的简单代数群的情况。对于高秩算术群的非交换泊松边界的von Neumann子代数,我们也推导出了马古利斯因子定理的一个非交换类似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Charmenability of higher rank arithmetic groups
We complete the study of characters on higher rank semisimple lattices initiated in [BH19,BBHP20], the missing case being the case of lattices in higher rank simple algebraic groups in arbitrary characteristics. More precisely, we investigate dynamical properties of the conjugation action of such lattices on their space of positive definite functions. Our main results deal with the existence and the classification of characters from which we derive applications to topological dynamics, ergodic theory, unitary representations and operator algebras. Our key theorem is an extension of the noncommutative Nevo-Zimmer structure theorem obtained in [BH19] to the case of simple algebraic groups defined over arbitrary local fields. We also deduce a noncommutative analogue of Margulis' factor theorem for von Neumann subalgebras of the noncommutative Poisson boundary of higher rank arithmetic groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信