基于遗传算法的电能消耗估算

A. Azadeh, S. Ghaderi, S. Tarverdian
{"title":"基于遗传算法的电能消耗估算","authors":"A. Azadeh, S. Ghaderi, S. Tarverdian","doi":"10.1109/ISIE.2006.295626","DOIUrl":null,"url":null,"abstract":"This study presents a genetic algorithm (GA) with variable parameters to forecast electricity demand using stochastic procedures. The economic indicators used in this paper are price, value added, number of customers and consumption in the last periods. This model can be used to estimate energy demand in the future by optimizing parameter values using available data. The GA applied in this study has been tuned for all the GA parameters and the best coefficients with minimum error is finally found, while all the GA parameter values are tested together. The estimation errors of genetic algorithm model are less than that of estimated by regression method. Finally, analysis of variance (ANOVA) was applied to compare genetic algorithm, regression and actual data. It was found that at alpha = 0.05 the three treatments are not equal and therefore LSD method was used to identify which model is closer to actual data. Moreover, it showed that genetic algorithm has better estimated values for electricity consumption in Iranian agriculture sector","PeriodicalId":296467,"journal":{"name":"2006 IEEE International Symposium on Industrial Electronics","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Electrical Energy Consumption Estimation by Genetic Algorithm\",\"authors\":\"A. Azadeh, S. Ghaderi, S. Tarverdian\",\"doi\":\"10.1109/ISIE.2006.295626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a genetic algorithm (GA) with variable parameters to forecast electricity demand using stochastic procedures. The economic indicators used in this paper are price, value added, number of customers and consumption in the last periods. This model can be used to estimate energy demand in the future by optimizing parameter values using available data. The GA applied in this study has been tuned for all the GA parameters and the best coefficients with minimum error is finally found, while all the GA parameter values are tested together. The estimation errors of genetic algorithm model are less than that of estimated by regression method. Finally, analysis of variance (ANOVA) was applied to compare genetic algorithm, regression and actual data. It was found that at alpha = 0.05 the three treatments are not equal and therefore LSD method was used to identify which model is closer to actual data. Moreover, it showed that genetic algorithm has better estimated values for electricity consumption in Iranian agriculture sector\",\"PeriodicalId\":296467,\"journal\":{\"name\":\"2006 IEEE International Symposium on Industrial Electronics\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Symposium on Industrial Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIE.2006.295626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Symposium on Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2006.295626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

提出了一种可变参数遗传算法,利用随机过程对电力需求进行预测。本文使用的经济指标是价格、增加值、顾客数量和上一时期的消费。该模型可用于利用现有数据优化参数值来估计未来的能源需求。本文应用的遗传算法对所有遗传算法参数进行了调优,最终找到误差最小的最佳系数,同时对所有遗传算法参数值进行了测试。遗传算法模型的估计误差小于回归方法估计的误差。最后,应用方差分析(ANOVA)对遗传算法、回归和实际数据进行比较。发现在alpha = 0.05时,三种处理不相等,因此使用LSD方法来确定哪个模型更接近实际数据。此外,它表明遗传算法对伊朗农业部门的电力消耗有更好的估计值
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrical Energy Consumption Estimation by Genetic Algorithm
This study presents a genetic algorithm (GA) with variable parameters to forecast electricity demand using stochastic procedures. The economic indicators used in this paper are price, value added, number of customers and consumption in the last periods. This model can be used to estimate energy demand in the future by optimizing parameter values using available data. The GA applied in this study has been tuned for all the GA parameters and the best coefficients with minimum error is finally found, while all the GA parameter values are tested together. The estimation errors of genetic algorithm model are less than that of estimated by regression method. Finally, analysis of variance (ANOVA) was applied to compare genetic algorithm, regression and actual data. It was found that at alpha = 0.05 the three treatments are not equal and therefore LSD method was used to identify which model is closer to actual data. Moreover, it showed that genetic algorithm has better estimated values for electricity consumption in Iranian agriculture sector
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信