多CUDA内核SoC Jetson TX基于图形的视觉处理代码生成

Elishai Ezra Tsur, Elyassaf Madar, Natan Danan
{"title":"多CUDA内核SoC Jetson TX基于图形的视觉处理代码生成","authors":"Elishai Ezra Tsur, Elyassaf Madar, Natan Danan","doi":"10.1109/MCSoC2018.2018.00013","DOIUrl":null,"url":null,"abstract":"Embedded vision processing is currently ingrained into many aspects of modern life, from computer-aided surgeries to navigation of unmanned aerial vehicles. Vision processing can be described using coarse-grained data flow graphs, which were standardized by OpenVX to enable both system and kernel level optimization via separation of concerns. Notably, graph-based specification provides a gateway to a code generation engine, which can produce an optimized, hardware-specific code for deployment. Here we provide an algorithm and JAVA-MVC-based implementation of automated code generation engine for OpenVX-based vision applications, tailored to NVIDIA multiple CUDA Cores SoC Jetson TX. Our algorithm pre-processes the graph, translates it into an ordered layer-oriented data model, and produces C code, which is optimized for the Jetson TX1 and comprised of error checking and iterative execution for real time vision processing.","PeriodicalId":413836,"journal":{"name":"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Code Generation of Graph-Based Vision Processing for Multiple CUDA Cores SoC Jetson TX\",\"authors\":\"Elishai Ezra Tsur, Elyassaf Madar, Natan Danan\",\"doi\":\"10.1109/MCSoC2018.2018.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embedded vision processing is currently ingrained into many aspects of modern life, from computer-aided surgeries to navigation of unmanned aerial vehicles. Vision processing can be described using coarse-grained data flow graphs, which were standardized by OpenVX to enable both system and kernel level optimization via separation of concerns. Notably, graph-based specification provides a gateway to a code generation engine, which can produce an optimized, hardware-specific code for deployment. Here we provide an algorithm and JAVA-MVC-based implementation of automated code generation engine for OpenVX-based vision applications, tailored to NVIDIA multiple CUDA Cores SoC Jetson TX. Our algorithm pre-processes the graph, translates it into an ordered layer-oriented data model, and produces C code, which is optimized for the Jetson TX1 and comprised of error checking and iterative execution for real time vision processing.\",\"PeriodicalId\":413836,\"journal\":{\"name\":\"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCSoC2018.2018.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC2018.2018.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

嵌入式视觉处理目前已深入到现代生活的许多方面,从计算机辅助手术到无人驾驶飞行器导航。视觉处理可以使用粗粒度的数据流图来描述,这是由OpenVX标准化的,通过关注点分离来实现系统级和内核级的优化。值得注意的是,基于图的规范为代码生成引擎提供了一个网关,该引擎可以为部署生成优化的、特定于硬件的代码。在这里,我们为基于openx的视觉应用提供了一种算法和基于java - mvc的自动代码生成引擎实现,该算法针对NVIDIA多CUDA内核SoC Jetson TX量身定制。我们的算法对图形进行预处理,将其转换为有序的面向层的数据模型,并生成针对Jetson TX1进行优化的C代码,该代码包括错误检查和迭代执行,用于实时视觉处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Code Generation of Graph-Based Vision Processing for Multiple CUDA Cores SoC Jetson TX
Embedded vision processing is currently ingrained into many aspects of modern life, from computer-aided surgeries to navigation of unmanned aerial vehicles. Vision processing can be described using coarse-grained data flow graphs, which were standardized by OpenVX to enable both system and kernel level optimization via separation of concerns. Notably, graph-based specification provides a gateway to a code generation engine, which can produce an optimized, hardware-specific code for deployment. Here we provide an algorithm and JAVA-MVC-based implementation of automated code generation engine for OpenVX-based vision applications, tailored to NVIDIA multiple CUDA Cores SoC Jetson TX. Our algorithm pre-processes the graph, translates it into an ordered layer-oriented data model, and produces C code, which is optimized for the Jetson TX1 and comprised of error checking and iterative execution for real time vision processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信