基于全局特征编码的预测监测算法

M. Jin, Jianhong Ye, Jiliang Luo, Yan Lin
{"title":"基于全局特征编码的预测监测算法","authors":"M. Jin, Jianhong Ye, Jiliang Luo, Yan Lin","doi":"10.1109/ICNSC48988.2020.9238130","DOIUrl":null,"url":null,"abstract":"Predictive monitoring is a branch of process mining to provide some valuable information that enables proactive corrective actions to mitigate risks. This paper proposes a new predictive monitoring algorithm, which divides the data processing into three parts: prefix extraction, prefix bucketing and prefix encoding. The presented encoding methods are based on the data structure of event log, and it will cause the loss of information in the raw data. Our main contribution is to define a new global feature encoding method, which keeps more information in raw data and has better scalability. Experiments are presented to demonstrate the proposed approach.","PeriodicalId":412290,"journal":{"name":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive Monitoring Algorithm Based on Global Feature Encoding\",\"authors\":\"M. Jin, Jianhong Ye, Jiliang Luo, Yan Lin\",\"doi\":\"10.1109/ICNSC48988.2020.9238130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predictive monitoring is a branch of process mining to provide some valuable information that enables proactive corrective actions to mitigate risks. This paper proposes a new predictive monitoring algorithm, which divides the data processing into three parts: prefix extraction, prefix bucketing and prefix encoding. The presented encoding methods are based on the data structure of event log, and it will cause the loss of information in the raw data. Our main contribution is to define a new global feature encoding method, which keeps more information in raw data and has better scalability. Experiments are presented to demonstrate the proposed approach.\",\"PeriodicalId\":412290,\"journal\":{\"name\":\"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC48988.2020.9238130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC48988.2020.9238130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预测性监控是流程挖掘的一个分支,它提供了一些有价值的信息,这些信息支持采取主动的纠正措施来降低风险。本文提出了一种新的预测监控算法,该算法将数据处理分为前缀提取、前缀存储和前缀编码三个部分。本文提出的编码方法基于事件日志的数据结构,会造成原始数据中信息的丢失。我们的主要贡献是定义了一种新的全局特征编码方法,该方法在原始数据中保留了更多的信息,并且具有更好的可扩展性。实验证明了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive Monitoring Algorithm Based on Global Feature Encoding
Predictive monitoring is a branch of process mining to provide some valuable information that enables proactive corrective actions to mitigate risks. This paper proposes a new predictive monitoring algorithm, which divides the data processing into three parts: prefix extraction, prefix bucketing and prefix encoding. The presented encoding methods are based on the data structure of event log, and it will cause the loss of information in the raw data. Our main contribution is to define a new global feature encoding method, which keeps more information in raw data and has better scalability. Experiments are presented to demonstrate the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信