{"title":"基于因果长度的低成本集CRDT","authors":"Weihai Yu, Sigbjørn Rostad","doi":"10.1145/3380787.3393678","DOIUrl":null,"url":null,"abstract":"CRDTs, or Conflict-free Replicated Data Types, are data abstractions that guarantee convergence for replicated data. Set is one of the most fundamental and widely used data types. Existing general-purpose set CRDTs associate every element in the set with causal contexts as meta data. Manipulation of causal contexts can be complicated and costly. We present a new set CRDT, CLSet (causal-length set), where the meta data associated with an element is simply a natural number (called causal length). We compare CLSet with existing general purpose CRDTs in terms of semantics and performance.","PeriodicalId":115452,"journal":{"name":"Proceedings of the 7th Workshop on Principles and Practice of Consistency for Distributed Data","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A low-cost set CRDT based on causal lengths\",\"authors\":\"Weihai Yu, Sigbjørn Rostad\",\"doi\":\"10.1145/3380787.3393678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CRDTs, or Conflict-free Replicated Data Types, are data abstractions that guarantee convergence for replicated data. Set is one of the most fundamental and widely used data types. Existing general-purpose set CRDTs associate every element in the set with causal contexts as meta data. Manipulation of causal contexts can be complicated and costly. We present a new set CRDT, CLSet (causal-length set), where the meta data associated with an element is simply a natural number (called causal length). We compare CLSet with existing general purpose CRDTs in terms of semantics and performance.\",\"PeriodicalId\":115452,\"journal\":{\"name\":\"Proceedings of the 7th Workshop on Principles and Practice of Consistency for Distributed Data\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th Workshop on Principles and Practice of Consistency for Distributed Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3380787.3393678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th Workshop on Principles and Practice of Consistency for Distributed Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3380787.3393678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CRDTs, or Conflict-free Replicated Data Types, are data abstractions that guarantee convergence for replicated data. Set is one of the most fundamental and widely used data types. Existing general-purpose set CRDTs associate every element in the set with causal contexts as meta data. Manipulation of causal contexts can be complicated and costly. We present a new set CRDT, CLSet (causal-length set), where the meta data associated with an element is simply a natural number (called causal length). We compare CLSet with existing general purpose CRDTs in terms of semantics and performance.