基于在线估计Q的卡尔曼滤波及其在目标跟踪中的应用

Yuan Liang, Hong Wang, Xiwang Dong, Qingdong Li, Z. Ren
{"title":"基于在线估计Q的卡尔曼滤波及其在目标跟踪中的应用","authors":"Yuan Liang, Hong Wang, Xiwang Dong, Qingdong Li, Z. Ren","doi":"10.1109/ISASS.2019.8757713","DOIUrl":null,"url":null,"abstract":"The Kalman filter is widely used in various fields, however the unknown process noises covariance will decrease the performance of Kalman filter, even lead to filter divergence. To avoid this, an innovative Kalman filter aided by online estimation on unknown process noise covariance is proposed in this paper. It estimates the unknown covariance from the observation sequence by recursive computation. Finally a simulation on target tracking system is given to verify the efficiency and reliability of proposed algorithm.","PeriodicalId":359959,"journal":{"name":"2019 3rd International Symposium on Autonomous Systems (ISAS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kalman Filter aided by Online Estimation on Q and its Application on Target Tracking\",\"authors\":\"Yuan Liang, Hong Wang, Xiwang Dong, Qingdong Li, Z. Ren\",\"doi\":\"10.1109/ISASS.2019.8757713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Kalman filter is widely used in various fields, however the unknown process noises covariance will decrease the performance of Kalman filter, even lead to filter divergence. To avoid this, an innovative Kalman filter aided by online estimation on unknown process noise covariance is proposed in this paper. It estimates the unknown covariance from the observation sequence by recursive computation. Finally a simulation on target tracking system is given to verify the efficiency and reliability of proposed algorithm.\",\"PeriodicalId\":359959,\"journal\":{\"name\":\"2019 3rd International Symposium on Autonomous Systems (ISAS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 3rd International Symposium on Autonomous Systems (ISAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISASS.2019.8757713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Symposium on Autonomous Systems (ISAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISASS.2019.8757713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卡尔曼滤波器广泛应用于各个领域,但未知过程噪声协方差会降低卡尔曼滤波器的性能,甚至导致滤波器发散。为了避免这一问题,本文提出了一种基于未知过程噪声协方差在线估计的卡尔曼滤波器。它通过递归计算估计观测序列的未知协方差。最后对目标跟踪系统进行了仿真,验证了算法的有效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kalman Filter aided by Online Estimation on Q and its Application on Target Tracking
The Kalman filter is widely used in various fields, however the unknown process noises covariance will decrease the performance of Kalman filter, even lead to filter divergence. To avoid this, an innovative Kalman filter aided by online estimation on unknown process noise covariance is proposed in this paper. It estimates the unknown covariance from the observation sequence by recursive computation. Finally a simulation on target tracking system is given to verify the efficiency and reliability of proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信