量化社会网络动态

Radosław Michalski, Piotr Bródka, Przemyslaw Kazienko, K. Juszczyszyn
{"title":"量化社会网络动态","authors":"Radosław Michalski, Piotr Bródka, Przemyslaw Kazienko, K. Juszczyszyn","doi":"10.1109/CASoN.2012.6412380","DOIUrl":null,"url":null,"abstract":"The dynamic character of most social networks requires to model evolution of networks in order to enable complex analysis of theirs dynamics. The following paper focuses on the definition of differences between network snapshots by means of Graph Differential Tuple. These differences enable to calculate the diverse distance measures as well as to investigate the speed of changes. Four separate measures are suggested in the paper with experimental study on real social network data.","PeriodicalId":431370,"journal":{"name":"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Quantifying social network dynamics\",\"authors\":\"Radosław Michalski, Piotr Bródka, Przemyslaw Kazienko, K. Juszczyszyn\",\"doi\":\"10.1109/CASoN.2012.6412380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamic character of most social networks requires to model evolution of networks in order to enable complex analysis of theirs dynamics. The following paper focuses on the definition of differences between network snapshots by means of Graph Differential Tuple. These differences enable to calculate the diverse distance measures as well as to investigate the speed of changes. Four separate measures are suggested in the paper with experimental study on real social network data.\",\"PeriodicalId\":431370,\"journal\":{\"name\":\"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASoN.2012.6412380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASoN.2012.6412380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

大多数社会网络的动态特性要求对网络的演化进行建模,以便对其动态进行复杂的分析。下面的文章重点讨论了用图差分元组(Graph Differential Tuple)来定义网络快照之间的差异。这些差异使我们能够计算不同的距离度量以及研究变化的速度。本文通过对真实社会网络数据的实验研究,提出了四种独立的度量方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying social network dynamics
The dynamic character of most social networks requires to model evolution of networks in order to enable complex analysis of theirs dynamics. The following paper focuses on the definition of differences between network snapshots by means of Graph Differential Tuple. These differences enable to calculate the diverse distance measures as well as to investigate the speed of changes. Four separate measures are suggested in the paper with experimental study on real social network data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信