基于posrank近似分解的非负矩阵分解

A. Almeida
{"title":"基于posrank近似分解的非负矩阵分解","authors":"A. Almeida","doi":"10.1109/EUROCON.2015.7313764","DOIUrl":null,"url":null,"abstract":"The present work addresses a particular issue related to the nonnegative factorisation of a matrix (NMF). When NMF is formulated as a nonlinear programming optimisation problem some algebraic properties concerning the dimensionality of the factorisation arise as especially important for the numerical resolution. Its importance comes in the form of a guarantee to obtain good quality approximations to the solutions of signal processing image problems. The focus of this work lies in the importance of the rank of the factor matrices, especially in the so-called posrank of the factorisation. We report computational tests that favor the conclusion that the value of the posrank has an important impact on the quality of the images recovered from the decomposition.","PeriodicalId":133824,"journal":{"name":"IEEE EUROCON 2015 - International Conference on Computer as a Tool (EUROCON)","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-negative matrix factorization using posrank-based approximation decompositions\",\"authors\":\"A. Almeida\",\"doi\":\"10.1109/EUROCON.2015.7313764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work addresses a particular issue related to the nonnegative factorisation of a matrix (NMF). When NMF is formulated as a nonlinear programming optimisation problem some algebraic properties concerning the dimensionality of the factorisation arise as especially important for the numerical resolution. Its importance comes in the form of a guarantee to obtain good quality approximations to the solutions of signal processing image problems. The focus of this work lies in the importance of the rank of the factor matrices, especially in the so-called posrank of the factorisation. We report computational tests that favor the conclusion that the value of the posrank has an important impact on the quality of the images recovered from the decomposition.\",\"PeriodicalId\":133824,\"journal\":{\"name\":\"IEEE EUROCON 2015 - International Conference on Computer as a Tool (EUROCON)\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE EUROCON 2015 - International Conference on Computer as a Tool (EUROCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROCON.2015.7313764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2015 - International Conference on Computer as a Tool (EUROCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON.2015.7313764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前的工作解决了一个与矩阵的非负分解(NMF)有关的特定问题。当NMF被表述为一个非线性规划优化问题时,一些与因式分解的维数有关的代数性质对数值分辨率尤为重要。它的重要性在于它保证了对信号处理图像问题的解获得高质量的近似。这项工作的重点在于因子矩阵的秩的重要性,特别是在所谓的因子分解的秩。我们报告的计算测试支持这样的结论,即posrank的值对分解后恢复的图像质量有重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-negative matrix factorization using posrank-based approximation decompositions
The present work addresses a particular issue related to the nonnegative factorisation of a matrix (NMF). When NMF is formulated as a nonlinear programming optimisation problem some algebraic properties concerning the dimensionality of the factorisation arise as especially important for the numerical resolution. Its importance comes in the form of a guarantee to obtain good quality approximations to the solutions of signal processing image problems. The focus of this work lies in the importance of the rank of the factor matrices, especially in the so-called posrank of the factorisation. We report computational tests that favor the conclusion that the value of the posrank has an important impact on the quality of the images recovered from the decomposition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信