非线性常微分方程的稳定性判据

O. Mangasarian
{"title":"非线性常微分方程的稳定性判据","authors":"O. Mangasarian","doi":"10.1137/0301018","DOIUrl":null,"url":null,"abstract":"The main results of this work are three sufficient conditions for the (1) stability, (2) uniform asymptotic stability in the large and (3) instability, of the equilibrium point $x = 0$ of the system of differential equations: $\\dot x = f(t,x)$, $f(t,0) = 0$. Stated roughly these conditions are: The point $x = 0$ is (1) stable if $x'f(t,x)$ is a concave function of x, (2) uniformly asymptotically stable in the large if $x'f(t,x)$ is a concave function of x is a strictly concave function of x, and (3) unstable if $x'f(t,x)$ is a strictly convex function of x. These results are obtained by using the stability and instability criteria of Liapunov and properties of concave and convex functions.","PeriodicalId":215491,"journal":{"name":"Journal of The Society for Industrial and Applied Mathematics, Series A: Control","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Stability Criteria for Nonlinear Ordinary Differential Equations\",\"authors\":\"O. Mangasarian\",\"doi\":\"10.1137/0301018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main results of this work are three sufficient conditions for the (1) stability, (2) uniform asymptotic stability in the large and (3) instability, of the equilibrium point $x = 0$ of the system of differential equations: $\\\\dot x = f(t,x)$, $f(t,0) = 0$. Stated roughly these conditions are: The point $x = 0$ is (1) stable if $x'f(t,x)$ is a concave function of x, (2) uniformly asymptotically stable in the large if $x'f(t,x)$ is a concave function of x is a strictly concave function of x, and (3) unstable if $x'f(t,x)$ is a strictly convex function of x. These results are obtained by using the stability and instability criteria of Liapunov and properties of concave and convex functions.\",\"PeriodicalId\":215491,\"journal\":{\"name\":\"Journal of The Society for Industrial and Applied Mathematics, Series A: Control\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Society for Industrial and Applied Mathematics, Series A: Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/0301018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Society for Industrial and Applied Mathematics, Series A: Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0301018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

得到了微分方程系统平衡点$x = 0$的三个充分条件:$\dot x = f(t,x)$, $f(t,0) = 0$,具有(1)稳定性,(2)大范围内一致渐近稳定性和(3)不稳定性。这些条件大致表述为:点$x = 0$是(1)稳定,如果$x'f(t,x)$是x的凹函数,如果$x'f(t,x)$是x的凹函数,如果$x'f(t,x)$是x的严格凹函数,如果$x'f(t,x)$是x的严格凸函数,如果$x'f(t,x)$是不稳定,如果$x'f(t,x)$是x的严格凸函数,则$x = 0$一致渐近稳定。这些结果是利用Liapunov的稳定性和不稳定性判据以及凹凸函数的性质得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability Criteria for Nonlinear Ordinary Differential Equations
The main results of this work are three sufficient conditions for the (1) stability, (2) uniform asymptotic stability in the large and (3) instability, of the equilibrium point $x = 0$ of the system of differential equations: $\dot x = f(t,x)$, $f(t,0) = 0$. Stated roughly these conditions are: The point $x = 0$ is (1) stable if $x'f(t,x)$ is a concave function of x, (2) uniformly asymptotically stable in the large if $x'f(t,x)$ is a concave function of x is a strictly concave function of x, and (3) unstable if $x'f(t,x)$ is a strictly convex function of x. These results are obtained by using the stability and instability criteria of Liapunov and properties of concave and convex functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信