分布式函数编码的超级分组

Derya Malak, M. Médard
{"title":"分布式函数编码的超级分组","authors":"Derya Malak, M. Médard","doi":"10.1109/spawc48557.2020.9154232","DOIUrl":null,"url":null,"abstract":"We consider the distributed source encoding problem with 2 correlated sources X1 and X2 and a destination that seeks the outcome of a continuous function f(X1, X2). We develop a compression scheme called hyper binning in order to quantize f. Hyper binning is a natural generalization of Cover’s random code construction for the asymptotically optimal Slepian-Wolf encoding scheme that makes use of binning. The key idea behind this approach is to use linear discriminant analysis in order to characterize different source feature combinations. This scheme captures the correlation between the sources and function’s structure as a means of dimensionality reduction. We investigate the performance of hyper binning for different source distributions, and identify which classes of sources entail more partitioning to achieve better function approximation.","PeriodicalId":172835,"journal":{"name":"2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hyper Binning for Distributed Function Coding\",\"authors\":\"Derya Malak, M. Médard\",\"doi\":\"10.1109/spawc48557.2020.9154232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the distributed source encoding problem with 2 correlated sources X1 and X2 and a destination that seeks the outcome of a continuous function f(X1, X2). We develop a compression scheme called hyper binning in order to quantize f. Hyper binning is a natural generalization of Cover’s random code construction for the asymptotically optimal Slepian-Wolf encoding scheme that makes use of binning. The key idea behind this approach is to use linear discriminant analysis in order to characterize different source feature combinations. This scheme captures the correlation between the sources and function’s structure as a means of dimensionality reduction. We investigate the performance of hyper binning for different source distributions, and identify which classes of sources entail more partitioning to achieve better function approximation.\",\"PeriodicalId\":172835,\"journal\":{\"name\":\"2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/spawc48557.2020.9154232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/spawc48557.2020.9154232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们考虑具有2个相关源X1和X2的分布式源编码问题,以及寻求连续函数f(X1, X2)的结果的目标。为了量化f,我们开发了一种称为超级分箱的压缩方案。超级分箱是利用分箱的渐近最优Slepian-Wolf编码方案的Cover随机码构造的自然推广。这种方法背后的关键思想是使用线性判别分析来表征不同的源特征组合。该方案捕获了源和函数结构之间的相关性,作为降维的一种手段。我们研究了不同源分布的超分割性能,并确定了哪些类型的源需要更多的分区来实现更好的函数逼近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyper Binning for Distributed Function Coding
We consider the distributed source encoding problem with 2 correlated sources X1 and X2 and a destination that seeks the outcome of a continuous function f(X1, X2). We develop a compression scheme called hyper binning in order to quantize f. Hyper binning is a natural generalization of Cover’s random code construction for the asymptotically optimal Slepian-Wolf encoding scheme that makes use of binning. The key idea behind this approach is to use linear discriminant analysis in order to characterize different source feature combinations. This scheme captures the correlation between the sources and function’s structure as a means of dimensionality reduction. We investigate the performance of hyper binning for different source distributions, and identify which classes of sources entail more partitioning to achieve better function approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信