Bita Soltan Mohammad Lou, M. Pourgol-Mohammad, M. Yazdani
{"title":"考虑湿度的燃气轮机叶片蠕变失效机理的寿命评估","authors":"Bita Soltan Mohammad Lou, M. Pourgol-Mohammad, M. Yazdani","doi":"10.1115/IMECE2018-87883","DOIUrl":null,"url":null,"abstract":"Gas turbines are the most important components in thermal power plants, and these components such as turbine has been studied carefully. Gas turbine components operate predominantly under elevated temperature and high stress, and consequently gradual deformation becomes temporally inevitable. In turbine blades, creep is common failure mechanism, and it is an important factor for design assessment. The gas turbine blade is a component operating at high elevated temperatures, requiring a cooling systems to reduce the temperature. Common power enhancement approach is to spray water into compressor, and it is how humidity becomes an important factor in creep failure mechanism. The humidity variability results in temperature level change during the turbine operation, potentially affecting the blades creep life. In this paper, first different creep life prediction models were classified, and then a new model is proposed for creep life considering humidity based on Arrhenius equation. In our study, failure criterion is rupture. As a case study, the creep life of Nimonic-90 alloy turbine blade was predicted using proposed method and compared with FEA results which collected by literature surveys. Proposed model is capable of predicting creep life with only knowing dry temperature (WAR = 0), and there is no need to measure blade temperature variation during operation. The influence of humidity (%WAR) were studied on turbine blades creep life, and results show that creep life of turbine blade increase with increasing humidity percentage.","PeriodicalId":201128,"journal":{"name":"Volume 13: Design, Reliability, Safety, and Risk","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Life Assessment of Gas Turbine Blades Under Creep Failure Mechanism Considering Humidity\",\"authors\":\"Bita Soltan Mohammad Lou, M. Pourgol-Mohammad, M. Yazdani\",\"doi\":\"10.1115/IMECE2018-87883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gas turbines are the most important components in thermal power plants, and these components such as turbine has been studied carefully. Gas turbine components operate predominantly under elevated temperature and high stress, and consequently gradual deformation becomes temporally inevitable. In turbine blades, creep is common failure mechanism, and it is an important factor for design assessment. The gas turbine blade is a component operating at high elevated temperatures, requiring a cooling systems to reduce the temperature. Common power enhancement approach is to spray water into compressor, and it is how humidity becomes an important factor in creep failure mechanism. The humidity variability results in temperature level change during the turbine operation, potentially affecting the blades creep life. In this paper, first different creep life prediction models were classified, and then a new model is proposed for creep life considering humidity based on Arrhenius equation. In our study, failure criterion is rupture. As a case study, the creep life of Nimonic-90 alloy turbine blade was predicted using proposed method and compared with FEA results which collected by literature surveys. Proposed model is capable of predicting creep life with only knowing dry temperature (WAR = 0), and there is no need to measure blade temperature variation during operation. The influence of humidity (%WAR) were studied on turbine blades creep life, and results show that creep life of turbine blade increase with increasing humidity percentage.\",\"PeriodicalId\":201128,\"journal\":{\"name\":\"Volume 13: Design, Reliability, Safety, and Risk\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 13: Design, Reliability, Safety, and Risk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-87883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 13: Design, Reliability, Safety, and Risk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-87883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Life Assessment of Gas Turbine Blades Under Creep Failure Mechanism Considering Humidity
Gas turbines are the most important components in thermal power plants, and these components such as turbine has been studied carefully. Gas turbine components operate predominantly under elevated temperature and high stress, and consequently gradual deformation becomes temporally inevitable. In turbine blades, creep is common failure mechanism, and it is an important factor for design assessment. The gas turbine blade is a component operating at high elevated temperatures, requiring a cooling systems to reduce the temperature. Common power enhancement approach is to spray water into compressor, and it is how humidity becomes an important factor in creep failure mechanism. The humidity variability results in temperature level change during the turbine operation, potentially affecting the blades creep life. In this paper, first different creep life prediction models were classified, and then a new model is proposed for creep life considering humidity based on Arrhenius equation. In our study, failure criterion is rupture. As a case study, the creep life of Nimonic-90 alloy turbine blade was predicted using proposed method and compared with FEA results which collected by literature surveys. Proposed model is capable of predicting creep life with only knowing dry temperature (WAR = 0), and there is no need to measure blade temperature variation during operation. The influence of humidity (%WAR) were studied on turbine blades creep life, and results show that creep life of turbine blade increase with increasing humidity percentage.